Counterfactuals and Causal Inference: Methods and Principles for Social Research (Paperback)
Stephen L. Morgan, Christopher Winship
- 出版商: Cambridge
- 出版日期: 2014-11-17
- 售價: $1,940
- 貴賓價: 9.5 折 $1,843
- 語言: 英文
- 頁數: 515
- 裝訂: Paperback
- ISBN: 1107694167
- ISBN-13: 9781107694163
-
相關分類:
大數據 Big-data、行銷/網路行銷 Marketing、機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,750$1,663 -
$420$378 -
$1,480$1,450 -
$2,340Causality: Models, Reasoning and Inference (Hardcover)
-
$301Nexus 規模化 Scrum 框架 (The Nexus Framework for Scaling Scrum: Continuously Delivering an Integrated Product with Multiple Scrum Teams)
-
$650$585 -
$1,360$1,292 -
$1,240$1,178 -
$300$270 -
$520$411 -
$301特徵工程入門與實踐 (Feature Engineering Made Easy)
-
$680$612 -
$880$695 -
$380$342 -
$580$458 -
$1,560$1,529 -
$680$530 -
$690$538 -
$3,980$3,781 -
$551阿裡雲天池大賽賽題解析 — 深度學習篇
-
$509機器學習算法競賽實戰
-
$602隱私計算
-
$2,146Introduction to Algorithms, 4/e (Hardcover)
-
$2,835Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems, 3/e (Paperback)
-
$760$593
相關主題
商品描述
In this second edition of Counterfactuals and Causal Inference, completely revised and expanded, the essential features of the counterfactual approach to observational data analysis are presented with examples from the social, demographic, and health sciences. Alternative estimation techniques are first introduced using both the potential outcome model and causal graphs; after which, conditioning techniques, such as matching and regression, are presented from a potential outcomes perspective. For research scenarios in which important determinants of causal exposure are unobserved, alternative techniques, such as instrumental variable estimators, longitudinal methods, and estimation via causal mechanisms, are then presented. The importance of causal effect heterogeneity is stressed throughout the book, and the need for deep causal explanation via mechanisms is discussed.
商品描述(中文翻譯)
在這本《反事實和因果推論》的第二版中,我們對觀察數據分析中的反事實方法的基本特點進行了全面修訂和擴展,並通過社會、人口和健康科學的例子進行了演示。首先介紹了使用潛在結果模型和因果圖的替代估計技術;之後,從潛在結果的角度介紹了匹配和回歸等調節技術。然後,我們介紹了在重要的因果暴露因素未被觀察到的研究情境中的替代技術,例如儀器變量估計器、長期方法和通過因果機制進行估計。全書強調了因果效應的異質性的重要性,並討論了通過機制進行深入因果解釋的需求。