Advanced Survival Models
暫譯: 進階生存模型

Legrand, Catherine

  • 出版商: CRC
  • 出版日期: 2021-03-23
  • 售價: $5,550
  • 貴賓價: 9.5$5,273
  • 語言: 英文
  • 頁數: 334
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 0367149672
  • ISBN-13: 9780367149673
  • 海外代購書籍(需單獨結帳)

商品描述

Survival data analysis is a very broad field of statistics, encompassing a large variety of methods used in a wide range of applications, and in particular in medical research. During the last twenty years, several extensions of "classical" survival models have been developed to address particular situations often encountered in practice. This book aims to gather in a single reference the most commonly used extensions, such as frailty models (in case of unobserved heterogeneity or clustered data), cure models (when a fraction of the population will not experience the event of interest), competing risk models (in case of different types of event), and joint survival models for a time-to-event endpoint and a longitudinal outcome.

Features

  • Presents state-of-the art approaches for different advanced survival models including frailty models, cure models, competing risk models and joint models for a longitudinal and a survival outcome
  • Uses consistent notation throughout the book for the different techniques presented
  • Explains in which situation each of these models should be used, and how they are linked to specific research questions
  • Focuses on the understanding of the models, their implementation, and their interpretation, with an appropriate level of methodological development for masters students and applied statisticians
  • Provides references to existing R packages and SAS procedure or macros, and illustrates the use of the main ones on real datasets

This book is primarily aimed at applied statisticians and graduate students of statistics and biostatistics. It can also serve as an introductory reference for methodological researchers interested in the main extensions of classical survival analysis.

商品描述(中文翻譯)

生存資料分析是一個非常廣泛的統計學領域,涵蓋了各種方法,應用於多種情境,特別是在醫學研究中。在過去的二十年中,已經開發出幾種“經典”生存模型的擴展,以應對實務中經常遇到的特定情況。本書旨在將最常用的擴展整合成一個單一的參考資料,例如脆弱性模型(在未觀察的異質性或聚類資料的情況下)、治癒模型(當一部分人口不會經歷感興趣的事件時)、競爭風險模型(在不同類型事件的情況下)以及針對時間到事件的終點和縱向結果的聯合生存模型。

特點
- 提供不同先進生存模型的最前沿方法,包括脆弱性模型、治癒模型、競爭風險模型以及針對縱向和生存結果的聯合模型
- 在全書中對不同技術使用一致的符號
- 解釋每種模型應該在何種情況下使用,以及它們如何與特定研究問題相關聯
- 專注於模型的理解、實施和解釋,對於碩士生和應用統計學家提供適當的研究方法發展水平
- 提供現有 R 套件和 SAS 程序或宏的參考,並在真實數據集上示範主要工具的使用

本書主要針對應用統計學家和統計學及生物統計學的研究生。它也可以作為對於有興趣於經典生存分析主要擴展的研究方法學者的入門參考資料。

作者簡介

Catherine Legrand is Professor in Statistics and Biostatistics at the Institute of Statistics, Biostatistics, and Actuarial Sciences (ISBA-LIDAM) of the Université Catholique de Louvain (UCLouvain, Belgium). She obtained a Master Degree in Mathematics from the Université Libre de Bruxelles (ULB, Belgium) in 1998. She worked for 7 years at the European Organization for Research and Treatment of Cancer (EORTC, Brussels) and became the primary statistician of the EORTC Lung Cancer Group. She was also a member of the EORTC Treatment Outcome Research Group, the Elderly Task Force, and coordinator of the EORTC Independent Data Monitoring Committee. In parallel, she completed a PhD in 2005 at the Center for Statistics, Hasselt University, in the field of survival analysis (frailty models). Early 2006, she started working as biometrician at Merck Sharp & Dohme (MSD) where she was involved in the design and analysis of clinical trials in respiratory diseases. In September 2007, she joined the Université Catholique de Louvain (UCLouvain). Her area of research includes survival data analysis, design and analysis of clinical trials and analysis of medical data. Along with these professional experiences, she co-authored more than 80 papers in peer-reviewed clinical and statistical journals.

作者簡介(中文翻譯)

Catherine Legrand 是比利時魯汶天主教大學(Université Catholique de Louvain, UCLouvain)統計學、生物統計學教授,任職於統計學、生物統計學及精算科學研究所(ISBA-LIDAM)。她於1998年在布魯塞爾自由大學(Université Libre de Bruxelles, ULB)獲得數學碩士學位。她在歐洲癌症研究與治療組織(European Organization for Research and Treatment of Cancer, EORTC,布魯塞爾)工作了7年,並成為EORTC肺癌小組的主要統計師。她同時也是EORTC治療結果研究小組、老年人工作小組的成員,以及EORTC獨立數據監測委員會的協調員。與此同時,她於2005年在哈瑟爾特大學(Hasselt University)統計中心完成了生存分析(脆弱模型)領域的博士學位。2006年初,她開始在默克公司(Merck Sharp & Dohme, MSD)擔任生物統計師,參與呼吸系統疾病臨床試驗的設計與分析。2007年9月,她加入魯汶天主教大學(UCLouvain)。她的研究領域包括生存數據分析、臨床試驗的設計與分析以及醫療數據分析。除了這些專業經驗外,她還共同撰寫了超過80篇在同行評審的臨床和統計期刊上發表的論文。