Algebraic Groups: The Theory of Group Schemes of Finite Type over a Field (Cambridge Studies in Advanced Mathematics)
暫譯: 代數群:有限型群方案的理論(劍橋高等數學研究)
J. S. Milne
- 出版商: Cambridge
- 出版日期: 2017-09-21
- 售價: $4,300
- 貴賓價: 9.5 折 $4,085
- 語言: 英文
- 頁數: 660
- 裝訂: Hardcover
- ISBN: 1107167485
- ISBN-13: 9781107167483
海外代購書籍(需單獨結帳)
買這商品的人也買了...
商品描述
Algebraic groups play much the same role for algebraists as Lie groups play for analysts. This book is the first comprehensive introduction to the theory of algebraic group schemes over fields that includes the structure theory of semisimple algebraic groups, and is written in the language of modern algebraic geometry. The first eight chapters study general algebraic group schemes over a field and culminate in a proof of the Barsotti-Chevalley theorem, realizing every algebraic group as an extension of an abelian variety by an affine group. After a review of the Tannakian philosophy, the author provides short accounts of Lie algebras and finite group schemes. The later chapters treat reductive algebraic groups over arbitrary fields, including the Borel-Chevalley structure theory. Solvable algebraic groups are studied in detail. Prerequisites have also been kept to a minimum so that the book is accessible to non-specialists in algebraic geometry.
商品描述(中文翻譯)
代數群對於代數學家來說,扮演的角色與李群對於分析學家所扮演的角色相似。本書是第一本全面介紹定義在域上的代數群方案理論的書籍,涵蓋了半簡單代數群的結構理論,並以現代代數幾何的語言撰寫。前八章研究了定義在一個域上的一般代數群方案,並以證明Barsotti-Chevalley定理作為高潮,該定理將每個代數群實現為一個阿貝爾多樣體與仿射群的擴展。在回顧Tannakian哲學後,作者簡要介紹了李代數和有限群方案。後面的章節探討了定義在任意域上的還原代數群,包括Borel-Chevalley結構理論。可解代數群則被詳細研究。前置條件也被保持在最低限度,以便使本書對於非代數幾何專家也能夠輕鬆理解。