Periods and Nori Motives
暫譯: 圓與海苔動機

Huber, Annette, Friedrich, Benjamin, Von Wangenheim, Jonas

  • 出版商: Springer
  • 出版日期: 2018-07-21
  • 售價: $6,540
  • 貴賓價: 9.5$6,213
  • 語言: 英文
  • 頁數: 372
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3319845241
  • ISBN-13: 9783319845241
  • 海外代購書籍(需單獨結帳)

商品描述

This book casts the theory of periods of algebraic varieties in the natural setting of Madhav Nori's abelian category of mixed motives. It develops Nori's approach to mixed motives from scratch, thereby filling an important gap in the literature, and then explains the connection of mixed motives to periods, including a detailed account of the theory of period numbers in the sense of Kontsevich-Zagier and their structural properties.
Period numbers are central to number theory and algebraic geometry, and also play an important role in other fields such as mathematical physics. There are long-standing conjectures about their transcendence properties, best understood in the language of cohomology of algebraic varieties or, more generally, motives. Readers of this book will discover that Nori's unconditional construction of an abelian category of motives (over fields embeddable into the complex numbers) is particularly well suited for this purpose. Notably, Kontsevich's formal period algebra represents a torsor under the motivic Galois group in Nori's sense, and the period conjecture of Kontsevich and Zagier can be recast in this setting.
Periods and Nori Motives is highly informative and will appeal to graduate students interested in algebraic geometry and number theory as well as researchers working in related fields. Containing relevant background material on topics such as singular cohomology, algebraic de Rham cohomology, diagram categories and rigid tensor categories, as well as many interesting examples, the overall presentation of this book is self-contained.

商品描述(中文翻譯)

本書將代數簇的週期理論置於 Madhav Nori 的混合動機的阿貝爾類別的自然背景中。它從頭開始發展 Nori 對混合動機的研究,填補了文獻中的一個重要空白,並解釋了混合動機與週期之間的聯繫,包括對 Kontsevich-Zagier 意義下的週期數理論及其結構性質的詳細說明。

週期數在數論和代數幾何中是核心概念,並且在數學物理等其他領域中也扮演著重要角色。關於它們的超越性質存在著長期的猜想,這些猜想最好用代數簇的上同調或更一般的動機的語言來理解。本書的讀者將會發現,Nori 對動機的阿貝爾類別的無條件構造(在可嵌入到複數的域上)特別適合這個目的。值得注意的是,Kontsevich 的形式週期代數在 Nori 的意義下代表了動機伽羅瓦群下的一個 torsor,而 Kontsevich 和 Zagier 的週期猜想可以在這個背景下重新表述。

《週期與 Nori 動機》內容豐富,將吸引對代數幾何和數論感興趣的研究生以及在相關領域工作的研究人員。書中包含了有關奇異上同調、代數 de Rham 上同調、圖類別和剛性張量類別等主題的相關背景材料,以及許多有趣的例子,整體呈現自成一體。

作者簡介

Annette Huber works in arithmetic geometry, in particular on motives and special values of L-functions. She has contributed to all aspects of the Bloch-Kato conjecture, a vast generalization of the class number formula and the conjecture of Birch and Swinnerton-Dyer. More recent research interests include period numbers in general and differential forms on singular varieties.

Stefan Müller-Stach works in algebraic geometry, focussing on algebraic cycles, regulators and period integrals. His work includes the detection of classes in motivic cohomology via regulators and the study of special subvarieties in Mumford-Tate varieties. More recent research interests include periods and their relations to mathematical physics and foundations of mathematics.

作者簡介(中文翻譯)

安妮特·霍伯(Annette Huber)專注於算術幾何,特別是動機(motives)和 L-函數的特殊值。她對布洛赫-卡托猜想(Bloch-Kato conjecture)的各個方面做出了貢獻,這是一個對類數公式(class number formula)和伯奇-斯溫頓-戴爾猜想(Birch and Swinnerton-Dyer conjecture)的廣泛推廣。她最近的研究興趣包括一般的週期數(period numbers)和奇異多樣體上的微分形式(differential forms)。

斯特凡·穆勒-斯塔赫(Stefan Müller-Stach)專注於代數幾何,研究代數循環(algebraic cycles)、調節子(regulators)和週期積分(period integrals)。他的工作包括通過調節子檢測動機同調(motivic cohomology)中的類別,以及研究穆姆福德-泰特多樣體(Mumford-Tate varieties)中的特殊子多樣體。最近的研究興趣包括週期及其與數學物理和數學基礎的關係。