Algebraic Geometry II: Cohomology of Schemes: With Examples and Exercises

Görtz, Ulrich, Wedhorn, Torsten

  • 出版商: Springer Spektrum
  • 出版日期: 2023-11-23
  • 售價: $4,110
  • 貴賓價: 9.5$3,905
  • 語言: 英文
  • 頁數: 869
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3658430303
  • ISBN-13: 9783658430306
  • 下單後立即進貨 (約1週~2週)

相關主題

商品描述

This book completes the comprehensive introduction to modern algebraic geometry which was started with the introductory volume Algebraic Geometry I: Schemes.
It begins by discussing in detail the notions of smooth, unramified and étale morphisms including the étale fundamental group. The main part is dedicated to the cohomology of quasi-coherent sheaves. The treatment is based on the formalism of derived categories which allows an efficient and conceptual treatment of the theory, which is of crucial importance in all areas of algebraic geometry. After the foundations are set up, several more advanced topics are studied, such as numerical intersection theory, an abstract version of the Theorem of Grothendieck-Riemann-Roch, the Theorem on Formal Functions, Grothendieck's algebraization results and a very general version of Grothendieck duality. The book concludes with chapters on curves and on abelian schemes, which serve to develop the basics of the theory of these two important classes of schemes on an advanced level, and at the same time to illustrate the power of the techniques introduced previously.
The text contains many exercises that allow the reader to check their comprehension of the text, present further examples or give an outlook on further results.

商品描述(中文翻譯)

這本書是現代代數幾何的全面介紹,它是以入門卷《代數幾何 I: 模式》為起點的。它首先詳細討論了光滑、無分歧和étale(平展)映射的概念,包括étale基本群。主要部分專注於拟凝聚層的上同调。這種處理方法基於導出范畴的形式主義,可以高效且概念清晰地處理這個理論,這在代數幾何的所有領域中都至關重要。在奠定基礎之後,還研究了一些更高級的主題,例如數值交點理論、Grothendieck-Riemann-Roch定理的抽象版本、形式函數定理、Grothendieck的代數化結果以及一個非常一般的Grothendieck對偶版本。書的最後幾章討論了曲線和阿貝爾概形,這有助於在高級水平上發展這兩個重要類別的概形理論,同時展示了先前介紹的技巧的威力。本文包含許多練習題,讓讀者檢查他們對文本的理解,提供進一步的例子或展望更多的結果。

作者簡介

Prof. Dr. Ulrich Görtz, Department of Mathematics, University of Duisburg-Essen

Prof. Dr. Torsten Wedhorn, Department of Mathematics, Technical University of Darmstadt

作者簡介(中文翻譯)

Prof. Dr. Ulrich Görtz, 數學系, 杜伊斯堡-埃森大學
Prof. Dr. Torsten Wedhorn, 數學系, 達姆斯塔特工業大學