Aspects of Differential Geometry IV
暫譯: 微分幾何的各個面向 IV

Calvino-Louzao, Esteban, Garcia-Rio, Eduardo, Gilkey, Peter

  • 出版商: Morgan & Claypool
  • 出版日期: 2019-04-18
  • 售價: $2,870
  • 貴賓價: 9.5$2,727
  • 語言: 英文
  • 頁數: 167
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1681735636
  • ISBN-13: 9781681735634
  • 相關分類: 微積分 Calculus線性代數 Linear-algebra
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Book IV continues the discussion begun in the first three volumes.

Although it is aimed at first-year graduate students, it is also intended to serve as a basic reference for people working in affine differential geometry. It also should be accessible to undergraduates interested in affine differential geometry. We are primarily concerned with the study of affine surfaces which are locally homogeneous. We discuss affine gradient Ricci solitons, affine Killing vector fields, and geodesic completeness. Opozda has classified the affine surface geometries which are locally homogeneous; we follow her classification. Up to isomorphism, there are two simply connected Lie groups of dimension 2. The translation group ℝ is Abelian and the ���� + �� group is non-Abelian. The first chapter presents foundational material. The second chapter deals with Type �� surfaces. These are the left-invariant affine geometries on ℝ . Associating to each Type �� surface the space of solutions to the quasi-Einstein equation corresponding to the eigenvalue �� = -1 turns out to be a very powerful technique and plays a central role in our study as it links an analytic invariant with the underlying geometry of the surface. The third chapter deals with Type �� surfaces; these are the left-invariant affine geometries on the ���� + �� group. These geometries form a very rich family which is only partially understood. The only remaining homogeneous geometry is that of the sphere �� . The fourth chapter presents relations between the geometry of an affine surface and the geometry of the cotangent bundle equipped with the neutral signature metric of the modified Riemannian extension.

商品描述(中文翻譯)

《書籍 IV》延續了前三卷開始的討論。

雖然本書的目標讀者是第一年的研究生,但也旨在為從事仿射微分幾何的工作者提供基本參考。對於對仿射微分幾何感興趣的本科生來說,本書也應該是可讀的。我們主要關注的是局部齊次的仿射曲面研究。我們討論仿射梯度 Ricci 自洽、仿射 Killing 向量場以及測地線的完備性。Opozda 已經對局部齊次的仿射曲面幾何進行了分類;我們遵循她的分類。根據同構性,有兩個維度為 2 的單連通李群。平移群 ℝ 是阿貝爾群,而 ℝ + ℝ 群則是非阿貝爾群。第一章介紹了基礎材料。第二章處理類型 ℝ² 的曲面。這些是 ℝ 上的左不變仿射幾何。將每個類型 ℝ² 的曲面與對應於特徵值 λ = -1 的準愛因斯坦方程的解空間關聯起來,結果是一種非常強大的技術,並在我們的研究中扮演了核心角色,因為它將一個分析不變量與曲面的底層幾何聯繫起來。第三章處理類型 ℝ³ 的曲面;這些是 ℝ + ℝ 群上的左不變仿射幾何。這些幾何形成了一個非常豐富的家族,但目前僅部分被理解。唯一剩下的齊次幾何是球面 S²。第四章介紹了仿射曲面的幾何與配備有中性簽名度量的修改黎曼擴展的余切束幾何之間的關係。