AI at the Edge: Solving Real-World Problems with Embedded Machine Learning (Paperback)
暫譯: 邊緣人工智慧:利用嵌入式機器學習解決現實世界的問題(平裝本)

Situnayake, Daniel, Plunkett, Jenny

買這商品的人也買了...

商品描述

Edge artificial intelligence is transforming the way computers interact with the real world, allowing internet of things (IoT) devices to make decisions using the 99% of sensor data that was previously discarded due to cost, bandwidth, or power limitations. With techniques like embedded machine learning, developers can capture human intuition and deploy it to any target--from ultra-low power microcontrollers to flexible embedded Linux devices--for applications that reduce latency, protect privacy, and work without a network connection, greatly expanding the capabilities of the IoT.

This practical guide gives engineering professionals and product managers an end-to-end framework for solving real-world industrial, commercial, and scientific problems with edge AI. You'll explore every stage of the process, from data collection to model optimization to tuning and testing, as you learn how to design and support edge AI and embedded ML products. Edge AI is destined to become a standard tool for systems engineers. This high-level roadmap will help you get started.

  • Develop your expertise in artificial intelligence and machine learning on edge devices
  • Understand which projects are best solved with edge AI
  • Explore typical design patterns used with edge AI apps
  • Use an iterative workflow to develop an edge AI application
  • Optimize models for deployment to embedded devices
  • Improve model performance based on feedback from real-world use

商品描述(中文翻譯)

邊緣人工智慧正在改變電腦與現實世界互動的方式,使物聯網(IoT)設備能夠利用99%因成本、頻寬或電力限制而被丟棄的感測器數據來做出決策。透過嵌入式機器學習等技術,開發人員可以捕捉人類直覺,並將其部署到任何目標上——從超低功耗的微控制器到靈活的嵌入式Linux設備——用於減少延遲、保護隱私並在無網路連接的情況下運作的應用,極大地擴展了物聯網的能力。

這本實用指南為工程專業人士和產品經理提供了一個端到端的框架,以利用邊緣人工智慧解決現實世界中的工業、商業和科學問題。您將探索整個過程的每個階段,從數據收集到模型優化,再到調整和測試,學習如何設計和支持邊緣人工智慧和嵌入式機器學習產品。邊緣人工智慧注定會成為系統工程師的標準工具。這個高層次的路線圖將幫助您入門。

- 發展您在邊緣設備上人工智慧和機器學習的專業知識
- 了解哪些專案最適合用邊緣人工智慧解決
- 探索邊緣人工智慧應用中使用的典型設計模式
- 使用迭代工作流程開發邊緣人工智慧應用
- 優化模型以部署到嵌入式設備
- 根據實際使用的反饋改善模型性能