Intelligent Workloads at the Edge: Deliver cyber-physical outcomes with data and machine learning using AWS IoT Greengrass
暫譯: 邊緣智能工作負載:利用 AWS IoT Greengrass 透過數據和機器學習實現網絡物理結果
Mitra, Indraneel, Burke, Ryan
- 出版商: Packt Publishing
- 出版日期: 2022-01-14
- 售價: $2,000
- 貴賓價: 9.5 折 $1,900
- 語言: 英文
- 頁數: 374
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1801811784
- ISBN-13: 9781801811781
-
相關分類:
Amazon Web Services、Machine Learning、物聯網 IoT
海外代購書籍(需單獨結帳)
相關主題
商品描述
Explore IoT, data analytics, and machine learning to solve cyber-physical problems using the latest capabilities of managed services such as AWS IoT Greengrass and Amazon SageMaker
Key Features:
- Accelerate your next edge-focused product development with the power of AWS IoT Greengrass
- Develop proficiency in architecting resilient solutions for the edge with proven best practices
- Harness the power of analytics and machine learning for solving cyber-physical problems
Book Description:
The Internet of Things (IoT) has transformed how people think about and interact with the world. The ubiquitous deployment of sensors around us makes it possible to study the world at any level of accuracy and enable data-driven decision-making anywhere. Data analytics and machine learning (ML) powered by elastic cloud computing have accelerated our ability to understand and analyze the huge amount of data generated by IoT. Now, edge computing has brought information technologies closer to the data source to lower latency and reduce costs.
This book will teach you how to combine the technologies of edge computing, data analytics, and ML to deliver next-generation cyber-physical outcomes. You'll begin by discovering how to create software applications that run on edge devices with AWS IoT Greengrass. As you advance, you'll learn how to process and stream IoT data from the edge to the cloud and use it to train ML models using Amazon SageMaker. The book also shows you how to train these models and run them at the edge for optimized performance, cost savings, and data compliance.
By the end of this IoT book, you'll be able to scope your own IoT workloads, bring the power of ML to the edge, and operate those workloads in a production setting.
What You Will Learn:
- Build an end-to-end IoT solution from the edge to the cloud
- Design and deploy multi-faceted intelligent solutions on the edge
- Process data at the edge through analytics and ML
- Package and optimize models for the edge using Amazon SageMaker
- Implement MLOps and DevOps for operating an edge-based solution
- Onboard and manage fleets of edge devices at scale
- Review edge-based workloads against industry best practices
Who this book is for:
This book is for IoT architects and software engineers responsible for delivering analytical and machine learning-backed software solutions to the edge. AWS customers who want to learn and build IoT solutions will find this book useful. Intermediate-level experience with running Python software on Linux is required to make the most of this book.
商品描述(中文翻譯)
探索物聯網(IoT)、數據分析和機器學習,以利用 AWS IoT Greengrass 和 Amazon SageMaker 等最新的管理服務能力來解決網絡物理問題
主要特點:
- 利用 AWS IoT Greengrass 的力量,加速您的下一個邊緣專注產品開發
- 掌握架構韌性解決方案的能力,並運用經驗證的最佳實踐
- 利用分析和機器學習的力量來解決網絡物理問題
書籍描述:
物聯網(IoT)改變了人們思考和與世界互動的方式。周圍傳感器的普遍部署使得在任何精確度水平上研究世界成為可能,並使數據驅動的決策在任何地方都能實現。由彈性雲計算驅動的數據分析和機器學習(ML)加速了我們理解和分析物聯網生成的大量數據的能力。現在,邊緣計算將信息技術更接近數據源,以降低延遲和減少成本。
本書將教您如何結合邊緣計算、數據分析和機器學習技術,以提供下一代網絡物理成果。您將首先學習如何使用 AWS IoT Greengrass 創建在邊緣設備上運行的軟件應用程序。隨著學習的深入,您將了解如何從邊緣處理和流式傳輸物聯網數據到雲端,並使用 Amazon SageMaker 訓練機器學習模型。本書還將向您展示如何訓練這些模型並在邊緣運行,以實現最佳性能、成本節省和數據合規性。
在本書結束時,您將能夠範圍定義自己的物聯網工作負載,將機器學習的力量帶到邊緣,並在生產環境中運行這些工作負載。
您將學到的內容:
- 從邊緣到雲端構建端到端的物聯網解決方案
- 在邊緣設計和部署多面向的智能解決方案
- 通過分析和機器學習在邊緣處理數據
- 使用 Amazon SageMaker 將模型打包和優化以適應邊緣
- 實施 MLOps 和 DevOps 以運行基於邊緣的解決方案
- 大規模上線和管理邊緣設備的群組
- 根據行業最佳實踐審查基於邊緣的工作負載
本書適合誰:
本書適合負責將分析和機器學習支持的軟件解決方案交付到邊緣的物聯網架構師和軟件工程師。希望學習和構建物聯網解決方案的 AWS 客戶將會發現本書非常有用。需要具備中級水平的 Linux 上運行 Python 軟件的經驗,以充分利用本書的內容。