Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural be
暫譯: 在AWS上應用機器學習與高效能運算:加速機器學習應用程式的開發與架構最佳實踐
Khanuja, Mani, Sabir, Farooq, Subramanian, Shreyas
- 出版商: Packt Publishing
- 出版日期: 2022-12-30
- 售價: $1,940
- 貴賓價: 9.5 折 $1,843
- 語言: 英文
- 頁數: 382
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1803237015
- ISBN-13: 9781803237015
-
相關分類:
Amazon Web Services、Machine Learning
海外代購書籍(需單獨結帳)
商品描述
Build, train, and deploy large machine learning models at scale in various domains such as computational fluid dynamics, genomics, autonomous vehicles, and numerical optimization using Amazon SageMaker
Key Features
- Understand the need for high-performance computing (HPC)
- Build, train, and deploy large ML models with billions of parameters using Amazon SageMaker
- Learn best practices and architectures for implementing ML at scale using HPC
Book Description
Machine learning (ML) and high-performance computing (HPC) on AWS run compute-intensive workloads across industries and emerging applications. Its use cases can be linked to various verticals, such as computational fluid dynamics (CFD), genomics, and autonomous vehicles.
This book provides end-to-end guidance, starting with HPC concepts for storage and networking. It then progresses to working examples on how to process large datasets using SageMaker Studio and EMR. Next, you'll learn how to build, train, and deploy large models using distributed training. Later chapters also guide you through deploying models to edge devices using SageMaker and IoT Greengrass, and performance optimization of ML models, for low latency use cases.
By the end of this book, you'll be able to build, train, and deploy your own large-scale ML application, using HPC on AWS, following industry best practices and addressing the key pain points encountered in the application life cycle.
What you will learn
- Explore data management, storage, and fast networking for HPC applications
- Focus on the analysis and visualization of a large volume of data using Spark
- Train visual transformer models using SageMaker distributed training
- Deploy and manage ML models at scale on the cloud and at the edge
- Get to grips with performance optimization of ML models for low latency workloads
- Apply HPC to industry domains such as CFD, genomics, AV, and optimization
Who this book is for
The book begins with HPC concepts, however, it expects you to have prior machine learning knowledge. This book is for ML engineers and data scientists interested in learning advanced topics on using large datasets for training large models using distributed training concepts on AWS, deploying models at scale, and performance optimization for low latency use cases. Practitioners in fields such as numerical optimization, computation fluid dynamics, autonomous vehicles, and genomics, who require HPC for applying ML models to applications at scale will also find the book useful.
商品描述(中文翻譯)
建構、訓練並在各種領域(如計算流體力學、基因組學、自動駕駛車輛和數值優化)中使用 Amazon SageMaker 大規模部署大型機器學習模型
主要特點
- 理解高效能運算(HPC)的需求
- 使用 Amazon SageMaker 建構、訓練並部署具有數十億參數的大型機器學習模型
- 學習使用 HPC 在大規模實施機器學習的最佳實踐和架構
書籍描述
在 AWS 上的機器學習(ML)和高效能運算(HPC)運行計算密集型工作負載,涵蓋各行各業和新興應用。其使用案例可以與各種垂直領域相關聯,例如計算流體力學(CFD)、基因組學和自動駕駛車輛。
本書提供端到端的指導,從存儲和網絡的 HPC 概念開始。接著進入如何使用 SageMaker Studio 和 EMR 處理大型數據集的實作範例。然後,您將學習如何使用分散式訓練建構、訓練和部署大型模型。後面的章節還將指導您如何使用 SageMaker 和 IoT Greengrass 將模型部署到邊緣設備,以及針對低延遲使用案例的機器學習模型性能優化。
在本書結束時,您將能夠使用 AWS 上的 HPC 建構、訓練和部署自己的大規模機器學習應用,遵循行業最佳實踐並解決應用生命週期中遇到的關鍵痛點。
您將學到的內容
- 探索 HPC 應用的數據管理、存儲和快速網絡
- 專注於使用 Spark 分析和可視化大量數據
- 使用 SageMaker 分散式訓練訓練視覺轉換模型
- 在雲端和邊緣大規模部署和管理機器學習模型
- 理解針對低延遲工作負載的機器學習模型性能優化
- 將 HPC 應用於計算流體力學、基因組學、自動駕駛車輛和優化等行業領域
本書適合誰
本書從 HPC 概念開始,但期望您具備先前的機器學習知識。本書適合對使用大型數據集訓練大型模型的分散式訓練概念、在大規模部署模型以及針對低延遲使用案例的性能優化感興趣的機器學習工程師和數據科學家。從事數值優化、計算流體力學、自動駕駛車輛和基因組學等領域的實務工作者,若需要 HPC 來將機器學習模型應用於大規模應用,也會發現本書非常有用。
目錄大綱
1. High-Performance Computing Fundamentals
2. Data Management and Transfer
3. Compute and Networking
4. Data Storage
5. Data Analysis
6. Distributed Training of Machine Learning Models
7. Deploying Machine Learning Models at Scale
8. Optimizing and Managing Machine Learning Models for Edge Deployment
9. Performance Optimization for Real-Time Inference
10. Data Visualization
11. Computational Fluid Dynamics
12. Genomics
13. Autonomous Vehicles
14. Numerical Optimization
目錄大綱(中文翻譯)
1. High-Performance Computing Fundamentals
2. Data Management and Transfer
3. Compute and Networking
4. Data Storage
5. Data Analysis
6. Distributed Training of Machine Learning Models
7. Deploying Machine Learning Models at Scale
8. Optimizing and Managing Machine Learning Models for Edge Deployment
9. Performance Optimization for Real-Time Inference
10. Data Visualization
11. Computational Fluid Dynamics
12. Genomics
13. Autonomous Vehicles
14. Numerical Optimization