Learn Amazon SageMaker - Second Edition: A guide to building, training, and deploying machine learning models for developers and data scientists
暫譯: 學習 Amazon SageMaker - 第二版:開發者與資料科學家構建、訓練及部署機器學習模型的指南

Simon, Julien

  • 出版商: Packt Publishing
  • 出版日期: 2021-11-26
  • 售價: $2,000
  • 貴賓價: 9.5$1,900
  • 語言: 英文
  • 頁數: 554
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1801817952
  • ISBN-13: 9781801817950
  • 相關分類: MakerMachine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Swiftly build and deploy machine learning models without managing infrastructure and boost productivity using the latest Amazon SageMaker capabilities such as Studio, Autopilot, Data Wrangler, Pipelines, and Feature Store


Key Features:

  • Build, train, and deploy machine learning models quickly using Amazon SageMaker
  • Optimize the accuracy, cost, and fairness of your models
  • Create and automate end-to-end machine learning workflows on Amazon Web Services (AWS)


Book Description:

Amazon SageMaker enables you to quickly build, train, and deploy machine learning models at scale without managing any infrastructure. It helps you focus on the machine learning problem at hand and deploy high-quality models by eliminating the heavy lifting typically involved in each step of the ML process. This second edition will help data scientists and ML developers to explore new features such as SageMaker Data Wrangler, Pipelines, Clarify, Feature Store, and much more.


You'll start by learning how to use various capabilities of SageMaker as a single toolset to solve ML challenges and progress to cover features such as AutoML, built-in algorithms and frameworks, and writing your own code and algorithms to build ML models. The book will then show you how to integrate Amazon SageMaker with popular deep learning libraries, such as TensorFlow and PyTorch, to extend the capabilities of existing models. You'll also see how automating your workflows can help you get to production faster with minimum effort and at a lower cost. Finally, you'll explore SageMaker Debugger and SageMaker Model Monitor to detect quality issues in training and production.


By the end of this Amazon book, you'll be able to use Amazon SageMaker on the full spectrum of ML workflows, from experimentation, training, and monitoring to scaling, deployment, and automation.


What You Will Learn:

  • Become well-versed with data annotation and preparation techniques
  • Use AutoML features to build and train machine learning models with AutoPilot
  • Create models using built-in algorithms and frameworks and your own code
  • Train computer vision and natural language processing (NLP) models using real-world examples
  • Cover training techniques for scaling, model optimization, model debugging, and cost optimization
  • Automate deployment tasks in a variety of configurations using SDK and several automation tools


Who this book is for:

This book is for software engineers, machine learning developers, data scientists, and AWS users who are new to using Amazon SageMaker and want to build high-quality machine learning models without worrying about infrastructure. Knowledge of AWS basics is required to grasp the concepts covered in this book more effectively. A solid understanding of machine learning concepts and the Python programming language will also be beneficial.

商品描述(中文翻譯)

快速構建和部署機器學習模型,而無需管理基礎設施,並利用最新的 Amazon SageMaker 功能(如 Studio、Autopilot、Data Wrangler、Pipelines 和 Feature Store)提升生產力

主要特點:
- 使用 Amazon SageMaker 快速構建、訓練和部署機器學習模型
- 優化模型的準確性、成本和公平性
- 在 Amazon Web Services (AWS) 上創建和自動化端到端的機器學習工作流程

書籍描述:
Amazon SageMaker 使您能夠快速構建、訓練和大規模部署機器學習模型,而無需管理任何基礎設施。它幫助您專注於當前的機器學習問題,並通過消除每個 ML 過程中通常涉及的繁重工作來部署高質量的模型。本書的第二版將幫助數據科學家和機器學習開發人員探索新的功能,如 SageMaker Data Wrangler、Pipelines、Clarify、Feature Store 等等。

您將首先學習如何使用 SageMaker 的各種功能作為單一工具集來解決機器學習挑戰,然後進一步涵蓋 AutoML、內建算法和框架,以及編寫自己的代碼和算法來構建機器學習模型。本書接著將展示如何將 Amazon SageMaker 與流行的深度學習庫(如 TensorFlow 和 PyTorch)集成,以擴展現有模型的能力。您還將看到自動化工作流程如何幫助您以最小的努力和更低的成本更快地進入生產環境。最後,您將探索 SageMaker Debugger 和 SageMaker Model Monitor,以檢測訓練和生產中的質量問題。

在本書結束時,您將能夠在機器學習工作流程的全範圍內使用 Amazon SageMaker,從實驗、訓練和監控到擴展、部署和自動化。

您將學到的內容:
- 熟悉數據標註和準備技術
- 使用 AutoML 功能通過 AutoPilot 構建和訓練機器學習模型
- 使用內建算法和框架以及自己的代碼創建模型
- 使用真實世界的例子訓練計算機視覺和自然語言處理 (NLP) 模型
- 涵蓋擴展、模型優化、模型調試和成本優化的訓練技術
- 使用 SDK 和多種自動化工具自動化各種配置中的部署任務

本書適合對象:
本書適合軟體工程師、機器學習開發人員、數據科學家和新手 AWS 使用者,他們希望在不擔心基礎設施的情況下構建高質量的機器學習模型。了解 AWS 基礎知識將有助於更有效地掌握本書所涵蓋的概念。對機器學習概念和 Python 程式語言的扎實理解也將是有益的。