Optimization Algorithms on Matrix Manifolds (Hardcover)
暫譯: 矩陣流形上的優化演算法 (精裝版)

P.-A. Absil, R. Mahony, R. Sepulchre

  • 出版商: Princeton University
  • 出版日期: 2007-12-23
  • 售價: $3,840
  • 貴賓價: 9.5$3,648
  • 語言: 英文
  • 頁數: 240
  • 裝訂: Hardcover
  • ISBN: 0691132984
  • ISBN-13: 9780691132983
  • 相關分類: Algorithms-data-structures
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

 

Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differential geometry necessary to algorithmic development. In the other chapters, several well-known optimization methods such as steepest descent and conjugate gradients are generalized to abstract manifolds. The book provides a generic development of each of these methods, building upon the material of the geometric chapters. It then guides readers through the calculations that turn these geometrically formulated methods into concrete numerical algorithms. The state-of-the-art algorithms given as examples are competitive with the best existing algorithms for a selection of eigenspace problems in numerical linear algebra.

 

 

Optimization Algorithms on Matrix Manifolds offers techniques with broad applications in linear algebra, signal processing, data mining, computer vision, and statistical analysis. It can serve as a graduate-level textbook and will be of interest to applied mathematicians, engineers, and computer scientists.

 

商品描述(中文翻譯)

許多科學和工程中的問題可以重新表述為在具有所謂流形結構的矩陣搜索空間上的優化問題。本書展示了如何利用這類問題的特殊結構來開發高效的數值算法。它特別強調算法的數值表述及其微分幾何抽象,說明了優秀的算法如何同時汲取微分幾何、優化和數值分析的見解。兩個理論性較強的章節為讀者提供了算法開發所需的微分幾何背景。在其他章節中,幾個著名的優化方法,如最速下降法和共軛梯度法,則被推廣到抽象流形上。本書對這些方法進行了通用的發展,並基於幾何章節的材料進行構建。接著,它引導讀者通過計算,將這些幾何表述的方法轉化為具體的數值算法。作為示例的最先進算法在數值線性代數的特徵空間問題中與現有最佳算法具有競爭力。

《矩陣流形上的優化算法》提供了在線性代數、信號處理、數據挖掘、計算機視覺和統計分析中廣泛應用的技術。它可以作為研究生級別的教科書,並將吸引應用數學家、工程師和計算機科學家的興趣。