Probability, Random Processes, and Statistical Analysis : Applications to Communications , Signal Processing, Queueing Theory and Mathematical Finance (Hardcover)
暫譯: 機率、隨機過程與統計分析:在通訊、信號處理、排隊理論及數學金融中的應用 (精裝本)
Hisashi Kobayashi, Brian L. Mark, William Turin
- 出版商: Camberidge
- 出版日期: 2012-02-13
- 售價: $1,280
- 貴賓價: 9.8 折 $1,254
- 語言: 英文
- 頁數: 812
- 裝訂: Hardcover
- ISBN: 0521895448
- ISBN-13: 9780521895446
-
相關分類:
Machine Learning、機率統計學 Probability-and-statistics
下單後立即進貨 (約5~7天)
買這商品的人也買了...
-
$620$490 -
$520$468 -
$1,580$1,501 -
$580$493 -
$680$578 -
$780$663 -
$780$663 -
$580$493 -
$400$380 -
$160$152 -
$650$429 -
$680$578 -
$360$252 -
$780$663 -
$320$240 -
$500$425 -
$390$332 -
$350$298 -
$490$417 -
$950$903 -
$520$442 -
$550$435 -
$450$441 -
$590$460 -
$500$390
相關主題
商品描述
Together with the fundamentals of probability, random processes, and statistical analysis, this insightful book also presents a broad range of advanced topics and applications. There is extensive coverage of Bayesian vs. frequentist statistics, time series and spectral representation, inequalities, bound and approximation, maximum-likelihood estimation and the expectation-maximization (EM) algorithm, geometric Brownian motion and Ito^ process. Applications such as hidden Markov models (HMM), the Viterbi, BCJR, and Baum-Welch algorithms, algorithms for machine learning, Wiener and Kalman filters, queueing and loss networks, and are treated in detail. The book will be useful to students and researchers in such areas as communications, signal processing, networks, machine learning, bioinformatics, econometrics and mathematical finance. With a solutions manual, lecture slides, supplementary materials, and MATLAB programs all available online, it is ideal for classroom teaching as well as a valuable reference for professionals.
Table Of Contents
1. Introduction
Part I. Probability, Random Variables and Statistics:
2. Probability
3. Discrete random variables
4. Continuous random variables
5. Functions of random variables and their distributions
6. Fundamentals of statistical analysis
7. Distributions derived from the normal distribution
Part II. Transform Methods, Bounds and Limits:
8. Moment generating function and characteristic function
9. Generating function and Laplace transform
10. Inequalities, bounds and large deviation approximation
11. Convergence of a sequence of random variables, and the limit theorems
Part III. Random Processes:
12. Random process
13. Spectral representation of random processes and time series
14. Poisson process, birth-death process, and renewal process
15. Discrete-time Markov chains
16. Semi-Markov processes and continuous-time Markov chains
17. Random walk, Brownian motion, diffusion and ito^ processes
Part IV. Statistical Inference:
18. Estimation and decision theory
19. Estimation algorithms
Part V. Applications and Advanced Topics:
20. Hidden Markov models and applications
21. Probabilistic models in machine learning
22. Filtering and prediction of random processes
23. Queuing and loss models.
商品描述(中文翻譯)
這本具有洞察力的書籍除了介紹機率、隨機過程和統計分析的基本原理外,還涵蓋了廣泛的進階主題和應用。書中詳細討論了貝葉斯統計與頻率統計、時間序列與頻譜表示、不等式、界限與近似、最大似然估計及期望最大化(EM)演算法、幾何布朗運動和伊藤過程。隱藏馬可夫模型(HMM)、維特比(Viterbi)、BCJR和鮑姆-韋爾奇(Baum-Welch)演算法、機器學習演算法、維納濾波器和卡爾曼濾波器、排隊和損失網路等應用也被詳細探討。這本書對於通訊、信號處理、網路、機器學習、生物資訊學、計量經濟學和數學金融等領域的學生和研究人員將非常有用。隨書附有解答手冊、講義幻燈片、補充材料和MATLAB程式,所有資源均可在線獲得,適合用於課堂教學,也是一個對專業人士非常有價值的參考資料。
目錄
1. 介紹
第一部分:機率、隨機變數與統計:
2. 機率
3. 離散隨機變數
4. 連續隨機變數
5. 隨機變數的函數及其分佈
6. 統計分析的基本原理
7. 從正態分佈衍生的分佈
第二部分:變換方法、界限與極限:
8. 矩生成函數和特徵函數
9. 生成函數和拉普拉斯變換
10. 不等式、界限和大偏差近似
11. 隨機變數序列的收斂及極限定理
第三部分:隨機過程:
12. 隨機過程
13. 隨機過程和時間序列的頻譜表示
14. 泊松過程、出生-死亡過程和更新過程
15. 離散時間馬可夫鏈
16. 半馬可夫過程和連續時間馬可夫鏈
17. 隨機漫步、布朗運動、擴散和伊藤過程
第四部分:統計推斷:
18. 估計與決策理論
19. 估計演算法
第五部分:應用與進階主題:
20. 隱藏馬可夫模型及其應用
21. 機器學習中的機率模型
22. 隨機過程的過濾與預測
23. 排隊與損失模型。