Bayesian Time Series Models (Hardcover)
暫譯: 貝葉斯時間序列模型 (精裝版)

David Barber, A. Taylan Cemgil, Silvia Chiappa

  • 出版商: Cambridge
  • 出版日期: 2011-09-30
  • 售價: $5,400
  • 貴賓價: 9.5$5,130
  • 語言: 英文
  • 頁數: 432
  • 裝訂: Hardcover
  • ISBN: 0521196760
  • ISBN-13: 9780521196765
  • 相關分類: 機率統計學 Probability-and-statistics
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

'What's going to happen next?' Time series data hold the answers, and Bayesian methods represent the cutting edge in learning what they have to say. This ambitious book is the first unified treatment of the emerging knowledge-base in Bayesian time series techniques. Exploiting the unifying framework of probabilistic graphical models, the book covers approximation schemes, both Monte Carlo and deterministic, and introduces switching, multi-object, non-parametric and agent-based models in a variety of application environments. It demonstrates that the basic framework supports the rapid creation of models tailored to specific applications and gives insight into the computational complexity of their implementation. The authors span traditional disciplines such as statistics and engineering and the more recently established areas of machine learning and pattern recognition. Readers with a basic understanding of applied probability, but no experience with time series analysis, are guided from fundamental concepts to the state-of-the-art in research and practice.

商品描述(中文翻譯)

「接下來會發生什麼?」時間序列數據持有答案,而貝葉斯方法則代表了學習這些數據所傳達內容的前沿。本書是一部雄心勃勃的作品,是對新興貝葉斯時間序列技術的首次統一處理。利用概率圖模型的統一框架,本書涵蓋了近似方案,包括蒙地卡羅(Monte Carlo)和確定性(deterministic)方法,並介紹了在各種應用環境中使用的切換(switching)、多物件(multi-object)、非參數(non-parametric)和基於代理(agent-based)模型。它展示了基本框架支持快速創建針對特定應用的模型,並深入探討其實現的計算複雜性。作者涵蓋了傳統學科如統計學和工程學,以及最近建立的機器學習和模式識別領域。對於具有應用概率基本理解但對時間序列分析沒有經驗的讀者,本書將從基本概念引導至研究和實踐的最前沿。