Bayesian Analysis with Python
暫譯: 使用 Python 進行貝葉斯分析
Osvaldo Martin
- 出版商: Packt Publishing
- 出版日期: 2016-11-25
- 售價: $2,220
- 貴賓價: 9.5 折 $2,109
- 語言: 英文
- 頁數: 282
- 裝訂: Paperback
- ISBN: 1785883801
- ISBN-13: 9781785883804
-
相關分類:
Python、程式語言、機率統計學 Probability-and-statistics
-
其他版本:
Bayesian Analysis with Python: Introduction to statistical modeling and probabilistic programming using PyMC3 and ArviZ, 2/e (Paperback)
買這商品的人也買了...
-
$450$441 -
$2,200$2,090 -
$290$276 -
$600$540 -
$520$468 -
$580$452 -
$520$411 -
$352低功耗藍牙開發權威指南
-
$1,754Foundations of Algorithms, 5/e (Paperback)
-
$320$288 -
$550$495 -
$3,650$3,468 -
$680$530 -
$2,980$2,831 -
$3,135Statistical Shape Analysis: With Applications in R (Wiley Series in Probability and Statistics) 2/e
-
$1,617Deep Learning (Hardcover)
-
$360$281 -
$790$672 -
$580$458 -
$1,840$1,748 -
$1,188Deep Reinforcement Learning Hands-On
-
$580$458 -
$1,180$1,121 -
$580$452 -
$350$315
商品描述
Key Features
- Simplify the Bayes process for solving complex statistical problems using Python;
- Tutorial guide that will take the you through the journey of Bayesian analysis with the help of sample problems and practice exercises;
- Learn how and when to use Bayesian analysis in your applications with this guide.
Book Description
The purpose of this book is to teach the main concepts of Bayesian data analysis. We will learn how to effectively use PyMC3, a Python library for probabilistic programming, to perform Bayesian parameter estimation, to check models and validate them. This book begins presenting the key concepts of the Bayesian framework and the main advantages of this approach from a practical point of view. Moving on, we will explore the power and flexibility of generalized linear models and how to adapt them to a wide array of problems, including regression and classification. We will also look into mixture models and clustering data, and we will finish with advanced topics like non-parametrics models and Gaussian processes. With the help of Python and PyMC3 you will learn to implement, check and expand Bayesian models to solve data analysis problems.
What you will learn
- Understand the essentials Bayesian concepts from a practical point of view
- Learn how to build probabilistic models using the Python library PyMC3
- Acquire the skills to sanity-check your models and modify them if necessary
- Add structure to your models and get the advantages of hierarchical models
- Find out how different models can be used to answer different data analysis questions
- When in doubt, learn to choose between alternative models.
- Predict continuous target outcomes using regression analysis or assign classes using logistic and softmax regression.
- Learn how to think probabilistically and unleash the power and flexibility of the Bayesian framework
About the Author
Osvaldo Martin is a researcher at The National Scientific and Technical Research Council (CONICET), the main organization in charge of the promotion of science and technology in Argentina. He has worked on structural bioinformatics and computational biology problems, especially on how to validate structural protein models. He has experience in using Markov Chain Monte Carlo methods to simulate molecules and loves to use Python to solve data analysis problems. He has taught courses about structural bioinformatics, Python programming, and, more recently, Bayesian data analysis. Python and Bayesian statistics have transformed the way he looks at science and thinks about problems in general. Osvaldo was really motivated to write this book to help others in developing probabilistic models with Python, regardless of their mathematical background. He is an active member of the PyMOL community (a C/Python-based molecular viewer), and recently he has been making small contributions to the probabilistic programming library PyMC3.
Table of Contents
- Thinking Probabilistically - A Bayesian Inference Primer
- Programming Probabilistically – A PyMC3 Primer
- Juggling with Multi-Parametric and Hierarchical Models
- Understanding and Predicting Data with Linear Regression Models
- Classifying Outcomes with Logistic Regression
- Model Comparison
- Mixture Models
- Gaussian Processes
商品描述(中文翻譯)
**主要特點**
- 簡化使用 Python 解決複雜統計問題的貝葉斯過程;
- 教學指南將帶領您通過範例問題和練習題的幫助,進行貝葉斯分析的旅程;
- 學習如何以及何時在您的應用中使用貝葉斯分析。
**書籍描述**
本書的目的是教授貝葉斯數據分析的主要概念。我們將學習如何有效地使用 PyMC3,這是一個用於概率編程的 Python 庫,來執行貝葉斯參數估計、檢查模型並驗證它們。本書首先介紹貝葉斯框架的關鍵概念以及從實用角度看這種方法的主要優勢。接下來,我們將探索廣義線性模型的力量和靈活性,以及如何將其適應於各種問題,包括回歸和分類。我們還將研究混合模型和聚類數據,最後將討論高級主題,如非參數模型和高斯過程。在 Python 和 PyMC3 的幫助下,您將學會實現、檢查和擴展貝葉斯模型,以解決數據分析問題。
**您將學到的內容**
- 從實用的角度理解貝葉斯概念的基本要素;
- 學習如何使用 Python 庫 PyMC3 構建概率模型;
- 獲得檢查模型合理性並在必要時修改模型的技能;
- 為您的模型添加結構,並獲得層次模型的優勢;
- 發現不同模型如何用於回答不同的數據分析問題;
- 當有疑問時,學會在替代模型之間進行選擇;
- 使用回歸分析預測連續目標結果,或使用邏輯回歸和 softmax 回歸進行分類;
- 學習如何以概率的方式思考,釋放貝葉斯框架的力量和靈活性。
**關於作者**
**Osvaldo Martin** 是阿根廷國家科學技術研究委員會(CONICET)的研究員,該機構負責推動阿根廷的科學和技術。他曾在結構生物信息學和計算生物學問題上工作,特別是如何驗證結構蛋白質模型。他在使用馬爾可夫鏈蒙特卡羅方法模擬分子方面有經驗,並喜歡使用 Python 解決數據分析問題。他教授過結構生物信息學、Python 編程以及最近的貝葉斯數據分析課程。Python 和貝葉斯統計改變了他看待科學和思考問題的方式。Osvaldo 非常有動力寫這本書,以幫助其他人使用 Python 開發概率模型,無論他們的數學背景如何。他是 PyMOL 社區(基於 C/Python 的分子查看器)的活躍成員,最近他也對概率編程庫 PyMC3 做出了一些小貢獻。
**目錄**
1. 概率思考 - 貝葉斯推斷入門
2. 概率編程 - PyMC3 入門
3. 多參數和層次模型的運用
4. 使用線性回歸模型理解和預測數據
5. 使用邏輯回歸進行結果分類
6. 模型比較
7. 混合模型
8. 高斯過程