買這商品的人也買了...
-
$700$630 -
$2,370$2,252 -
$836PSP: A Self-Improvement Process for Software Engineers (Hardcover)
-
$880$748 -
$880$695 -
$1,320TSP-Leading a Development Team
-
$399CISSP All-in-One Exam Guide, 3/e
-
$650$514 -
$650$507 -
$800$760 -
$680$578 -
$650$507 -
$599$473 -
$680$578 -
$520$442 -
$420$357 -
$680$537 -
$590$502 -
$2,030$1,929 -
$850$765 -
$2,000Head First Object-Oriented Analysis and Design: A Brain Friendly Guide to OOA & D (Paperback)
-
$350$298 -
$600$480 -
$450$356 -
$6,820$6,479
相關主題
商品描述
Description
Light and Matter: Electromagnetism, Optics, Spectroscopy and Lasers covers both the theory and applications of the different ways in which light interacts with matter.
* Introduces the reader to the nature of light
* Explains the key processes which occur as light travels through matter
* Discusses more advanced topics, such as the ways in which light interacts with charged particles, and quantum descriptions of the interaction mechanisms
Table of Contents
Preface.
1 Electromagnetic radiation.
1.1 Brief history of the interaction of light and matter.
1.2 Light in vacuum.
1.3 Matter–source of light.
2 Phenomenology of light propagation in matter.
2.1 Absorption of light.
2.2 Nonlinear absorption.
2.3 Index of refraction.
2.4 Optical phenomena in nonisotropic media.
2.5 Electric field effects.
2.6 Acousto-optic effects.
2.7 Magnetic field effects.
3 The interaction of light and matter.
3.1 Lorentz force law.
3.2 Motion of a charged particle in static electric and magnetic fields.
3.3 Motion of a bound electron in an electromagnetic field.
3.4 Radiation due to acceleration of charges.
3.5 Multipole radiation.
3.6 Scattering of a light wavepacket.
3.7 Cooling and trapping of atoms.
4 Magnetic phenomena, constitutive relations and plasmas.
4.1 Magnetic moments.
4.2 Magnetization.
4.3 Magnetic resonance.
4.4 Polarization and magnetization as source terms.
4.5 Atomistic derivation of macroscopic electromagnetism and the constitutive relations.
4.6 Microscopic polarizability and macroscopic polarization.
4.7 Dielectric relaxation.
4.8 Plasmas 275
5 Quantum description of absorption, emission and light scattering.
5.1 Charged particle in an electromagnetic field.
5.2 Absorption and emission.
5.3 Rayleigh and Raman scattering.
5.4 Thomson scattering.
6 Spectroscopy.
6.1 Atoms.
6.2 Molecules.
6.3 Diatomic molecules.
6.4 Polyatomic molecules.
6.5 Condensed-phase materials.
7 Lasers.
7.1 Laser dynamics.
7.2 Threshold.
7.3 Steady state.
7.4 Pulsed laser operation.
7.5 Cavity modes.
7.6 Amplified spontaneous emission.
7.7 Laser linewidth.
7.8 Laser coherence.
7.9 Specific laser systems.
8 Nonlinear optics.
8.1 Expansion of the polarization in the electric field.
8.2 Phase-matching.
8.3 Second harmonic generation.
8.4 Three-wave mixing.
8.5 Third harmonic generation.
8.6 Self-focusing and self-phase modulation.
8.7 Four-wave mixing.
8.8 Stimulated Raman processes.
8.9 Stimulated Brillouin processes.
8.10 Nonlinear matter-wave optics.
9 Quantum-optical processes.
9.1 Interaction of a two-level system with an electromagnetic field.
9.2 Liouville–von Neumann equation for the density matrix.
9.3 Three-level system.
9.4 Coherent states and squeezed states.
9.5 The Jaynes–Cummings model.
9.6 Interaction between modes of a quantum field.
10 Light propagation in optical fibers and introduction to optical communication systems.
10.1 Fiber characteristics.
10.2 Transverse modes of an optical fiber.
10.3 Nonlinear processes in fibers.
10.4 Fiber-optic communication systems.
Appendices.
Appendix A: vector analysis.
A.1 Scalar and vector products.
A.2 Differential operators.
A.3 Divergence and Stokes theorems.
A.4 Curvilinear coordinates.
Appendix B: Electromagnetism and Maxwell’s equations.
B.1 The laws of electromagnetism.
B.2 Electromagnetic units.
B.3 Maxwell’s equations.
Appendix C: Quantum mechanics and the Schr¨odinger equation.
C.1 Time-dependent and time-independent Schr¨odinger equations.
C.2 Spherical harmonics.
C.3 The radial Schrodinger equation.
C.4 The free particle.
C.5 The spherical top and the distorted spherical top.
C.6 The Coulomb potential.
C.7 Atomic units.
C.8 The Morse potential.
C.9 The harmonic oscillator potential.
Appendix D: perturbation theory.
D.1 Nondegenerate time-independent perturbation theory.
D.2 Degenerate time-independent perturbation theory.
D.3 Time-dependent perturbation theory.
Appendix E: Fundamental constants.
References.
Bibliography.
Index.
商品描述(中文翻譯)
**描述**
《光與物質:電磁學、光學、光譜學與雷射》涵蓋了光與物質互動的不同方式的理論與應用。
* 介紹光的本質
* 解釋光在物質中傳播時發生的關鍵過程
* 討論更高級的主題,例如光與帶電粒子的互動方式,以及互動機制的量子描述
**目錄**
**前言**
**1 電磁輻射**
1.1 光與物質互動的簡史
1.2 真空中的光
1.3 物質—光的來源
**2 光在物質中的傳播現象**
2.1 光的吸收
2.2 非線性吸收
2.3 折射率
2.4 非各向同性介質中的光學現象
2.5 電場效應
2.6 聲光效應
2.7 磁場效應
**3 光與物質的互動**
3.1 洛倫茲力法則
3.2 帶電粒子在靜態電場和磁場中的運動
3.3 受束縛電子在電磁場中的運動
3.4 由於帶電粒子加速而產生的輻射
3.5 多極輻射
3.6 光波包的散射
3.7 原子的冷卻與捕獲
**4 磁現象、組成關係與等離子體**
4.1 磁矩
4.2 磁化
4.3 磁共振
4.4 偏振與磁化作為源項
4.5 從原子層面推導宏觀電磁學及其組成關係
4.6 微觀極化率與宏觀極化
4.7 電介質鬆弛
4.8 等離子體
**5 吸收、發射與光散射的量子描述**
5.1 電磁場中的帶電粒子
5.2 吸收與發射
5.3 瑞利散射與拉曼散射
5.4 湯姆森散射
**6 光譜學**
6.1 原子
6.2 分子
6.3 雙原子分子
6.4 多原子分子
6.5 凝聚相材料
**7 雷射**
7.1 雷射動力學
7.2 閾值
7.3 穩態
7.4 脈衝雷射操作
7.5 腔模
7.6 增強自發輻射
7.7 雷射線寬
7.8 雷射相干性
7.9 特定雷射系統
**8 非線性光學**
8.1 在電場中的極化展開
8.2 相位匹配