Electron Beams and Microwave Vacuum Electronics (Hardcover)
暫譯: 電子束與微波真空電子學(精裝版)

Shulim E. Tsimring

  • 出版商: Wiley
  • 出版日期: 2006-10-01
  • 售價: $7,330
  • 貴賓價: 9.5$6,964
  • 語言: 英文
  • 頁數: 573
  • 裝訂: Hardcover
  • ISBN: 0470048166
  • ISBN-13: 9780470048160
  • 相關分類: 微波工程 Microwave
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Description

The physics and theory underlying electron beams and microwave vacuum electronics

 

This book focuses on a fundamental feature of vacuum electronics: the strong interaction of the physics of electron beams and vacuum microwave electronics, including millimeter-wave electronics. The author guides readers from the roots of classical vacuum electronics to the most recent achievements in the field, exploring both the physics and the theory underlying electron beams and devices of vacuum high-frequency electronics. Special attention is devoted to the physics and theory of relativistic beams and microwave devices. Readers gain a deep understanding of the topic as well as the theory and applications of specific devices.

The book consists of two parts. Highlights of Part One, "Electron Beams," include:

  • Motion of charged particles in static fields
  • Theory of electron lenses
  • Electron beams with self fields and problems in the formation and transport of intense electron beams

Part Two, "Microwave Vacuum Electronics," features coverage of such topics as:

  • Physics and theory of the interaction of electron beams with electromagnetic fields in quasi-stationary systems (e.g., diodes, klystrons)
  • Systems with continuous interactions (e.g., traveling wave tubes, backward wave oscillators)
  • Crossed-field systems (e.g., traveling wave and backward wave tubes of M-type, magnetrons, crossed-field amplifiers, MILO)
  • Systems based on stimulated radiation of classical electron oscillators (e.g., classical electron masers, including gyrotrons, classical auto-resonance masers, free-electron lasers)

The author clearly states problems and then explores appropriate models, approximations, and derivations. This book, based on the author's own research and lectures, is recommended for students, researchers, and engineers working in such fields as electron beam technology, high-frequency vacuum devices for communications, radar, controlled fusion, charged particle accelerators, materials processing, and biomedicine.

 

 

Table of Contents

PREFACE.

Introduction.

I.1 Outline of the Book.

I.2 List of Symbols.

I.3 Electromagnetic Fields and Potentials.

I.4 Principle of Least Action. Lagrangian. Generalized Momentum. Lagrangian Equations.

I.5 Hamiltonian. Hamiltonian Equations.

I.6 Liouville Theorem.

I.7 Emittance. Brightness.

PART I ELECTRON BEAMS.

1 Motion of Electrons in External Electric and Magnetic Static Fields.

1.1 Introduction.

1.2 Energy of a Charged Particle.

1.3 Potential–Velocity Relation (Static Fields).

1.4 Electrons in a Linear Electric Field e0E ¼ kx.

1.5 Motion of Electrons in Homogeneous Static Fields.

1.6 Motion of Electrons in Weakly Inhomogeneous Static Fields.

1.6.1 Small Variations in Electromagnetic Fields Acting on Moving Charged Particles.

1.7 Motion of Electrons in Fields with Axial and Plane Symmetry. Busch’s Theorem.

2 Electron Lenses.

2.1 Introduction.

2.2 Maupertuis’s Principle. Electron-Optical Refractive Index.

Differential Equations of Trajectories.

2.3 Differential Equations of Trajectories in Axially Symmetric Fields.

2.4 Differential Equations of Paraxial Trajectories in Axially Symmetric Fields Without a Space Charge.

2.5 Formation of Images by Paraxial Trajectories.

2.6 Electrostatic Axially Symmetric Lenses.

2.7 Magnetic Axially Symmetric Lenses.

2.8 Aberrations of Axially Symmetric Lenses.

2.9 Comparison of Electrostatic and Magnetic Lenses. Transfer Matrix of Lenses .

2.10 Quadrupole lenses.

3 Electron Beams with Self Fields.

3.1 Introduction.

3.2 Self-Consistent Equations of Steady-State Space-Charge Electron Beams.

3.3 Euler’s Form of a Motion Equation. Lagrange and Poincare´ Invariants of Laminar Flows.

3.4 Nonvortex Beams. Action Function. Planar Nonrelativistic Diode.

Perveance. Child–Langmuir Formula. r- and T-Modes of Electron Beams.

3.5 Solutions of Self-Consistent Equations for Curvilinear Space-Charge Laminar Beams. Meltzer Flow. Planar Magnetron with an Inclined Magnetic Field. Dryden Flow.

4 Electron Guns.

4.1 Introduction.

4.2 Pierce’s Synthesis Method for Gun Design.

4.3 Internal Problems of Synthesis. Relativistic Planar Diode. Cylindrical and Spherical Diodes.

4.4 External Problems of Synthesis. Cauchy Problem.

4.5 Synthesis of Electrode Systems for Two-Dimensional Curvilinear Beams with Translation Symmetry (Lomax–Kirstein Method). Magnetron Injection Gun.

4.6 Synthesis of Axially Symmetric Electrode Systems.

4.7 Electron Guns with Compressed Beams. Magnetron Injection Gun.

4.8 Explosive Emission Guns.

5 Transport of Space-Charge Beams.

5.1 Introduction.

5.2 Unrippled Axially Symmetric Nonrelativistic Beams in a Uniform Magnetic field.

5.3 Unrippled Relativistic Beams in a Uniform External Magnetic Field..

5.4 Cylindrical Beams in an Infinite Magnetic Field.

5.5 Centrifugal Electrostatic Focusing.

5.6 Paraxial-Ray Equations of Axially Symmetric Laminar Beams.

5.7 Axially Symmetric Paraxial Beams in a Uniform Magnetic Field with Arbitrary Shielding of a Cathode Magnetic Field.

5.8 Transport of Space-Charge Beams in Spatial Periodic Fields.

PART II MICROWAVE VACUUM ELECTRONICS.

6 Quasistationary Microwave Devices.

6.1 Introduction.

6.2 Currents in Electron Gaps. Total Current and the Shockley–Ramo Theorem.

6.3 Admittance of a Planar Electron Gap. Electron Gap as an Oscillator. Monotron.

6.4 Equation of Stationary Oscillations of a Resonance Self-Excited Circuit.

6.5 Effects of a Space-Charge Field. Total Current Method. High-Frequency Diode in the r-Mode. Llewellyn–Peterson Equations.

7 Klystrons.

7.1 Introduction.

7.2 Velocity Modulation of an Electron beam.

7.3 Cinematic (Elementary) Theory of Bunching.

7.4 Interaction of a Bunched Current with a Catcher Field. Output Power of A Two-Cavity Klystron.

7.5 Experimental Characteristics of a Two-Resonator Amplifier and Frequency-Multiplier Klystrons.

7.6 Space-Charge Waves in Velocity-Modulated Beams.

7.7 Multicavity and Multibeam Klystron Amplifiers.

7.8 Relativistic Klystrons.

7.9 Reflex Klystrons.

8 Traveling-Wave Tubes and Backward-Wave Oscillators (O-Type Tubes).

8.1 Introduction.

8.2 Qualitative Mechanism of Bunching and Energy Output in a TWTO.

8.3 Slow-Wave Structures.

8.4 Elements of SWS Theory.

8.5 Linear Theory of a Nonrelativistic TWTO. Dispersion Equation, Gain, Effects of Nonsynchronism, Space Charge, and Loss in a Slow-Wave Structure.

8.6 Nonlinear Effects in a Nonrelativistic TWTO. Enhancement of TWTO Efficiency (Velocity Tapering, Depressed Collectors).

8.7 Basic Characteristics and Applications of Nonrelativistic TWTOs.

8.8 Backward-Wave Oscillators.

8.9 Millimeter Nonrelativistic TWTOs, BWOs, and Orotrons.

8.10 Relativistic TWTOs and BWOs.

9 Crossed-Field Amplifiers and Oscillators (M-Type Tubes).

9.1 Introduction.

9.2 Elementary Theory of a Planar MTWT.

9.3 MTWT Amplification.

9.4 M-type Injected Beam Backward-Wave Oscillators (MWO, M-Carcinotron).

9.5 Magnetrons.

9.6 Relativistic Magnetrons.

9.7 Magnetically Insulated Line Oscillators.

9.8 Crossed-Field Amplifiers.

10 Classical Electron Masers and Free Electron Lasers.

10.1 Introduction.

10.2 Spontaneous Radiation of Classical Electron Oscillators.

10.3 Stimulated Radiation of Excited Classical Electron Oscillators.

10.4 Examples of Electron Cyclotron Masers.

10.5 Resonators of Gyromonotrons (Free and Forced Oscillations).

10.6 Theory of a Gyromonotron.

10.7 Subrelativistic Gyrotrons.

10.8 Elements of Gyrotron Electron Optics.

10.9 Mode Interaction and Mode Selection in Gyrotrons. Output Power Systems.

10.10 Gyroklystrons.

10.11 Gyro-Traveling-Wave Tubes.

10.12 Applications of Gyrotrons.

10.13 Cyclotron Autoresonance Masers.

10.14 Free Electron Lasers.

Appendixes.

1. Proof of the 3/2 Law for Nonrelativistic Diodes in the r-Mode.

2. Synthesis of Guns for M-Type TWTS and BWOS.

3. Magnetic Field in Axially Symmetric Systems.

4. Dispersion Characteristics of Interdigital and Comb Structures.

5. Electromagnetic Field in Planar Uniform Slow-Wave Structures.

6. Equations of Free Oscillations of Gyrotron Resonators.

7. Derivation of Eqs. (10.66) and (10.67).

8. Calculation of Fourier Coefficients in Gyrotron Equations.

9. Magnetic Systems of Gyrotrons.

References.

Index.

商品描述(中文翻譯)

書籍描述

本書專注於真空電子學的一個基本特徵:電子束與真空微波電子學(包括毫米波電子學)的物理強互動。作者引導讀者從經典真空電子學的根源到該領域最新的成就,探索電子束及真空高頻電子設備的物理和理論。特別關注相對論束和微波設備的物理與理論。讀者將深入理解該主題以及特定設備的理論和應用。

本書分為兩部分。第一部分「電子束」的重點包括:

- 帶電粒子在靜態場中的運動
- 電子透鏡的理論
- 具有自場的電子束及強電子束的形成和傳輸問題

第二部分「微波真空電子學」涵蓋的主題包括:

- 電子束與準靜態系統(例如二極體、克萊斯特龍)中電磁場的相互作用的物理和理論
- 具有連續相互作用的系統(例如行波管、反向波振盪器)
- 交叉場系統(例如M型行波管和反向波管、磁控管、交叉場放大器、MILO)
- 基於經典電子振盪器的受激輻射的系統(例如經典電子微波振盪器,包括回旋管、經典自共振微波振盪器、自由電子激光)

作者清楚地陳述問題,然後探索適當的模型、近似和推導。本書基於作者自己的研究和講座,推薦給從事電子束技術、高頻真空通信設備、雷達、受控核融合、帶電粒子加速器、材料加工和生物醫學等領域的學生、研究人員和工程師。

目錄

前言

引言

I.1 書籍大綱

I.2 符號列表

I.3 電磁場和勢能

I.4 最小作用原理。拉格朗日。廣義動量。拉格朗日方程。

I.5 哈密頓。哈密頓方程。

I.6 劉維爾定理。

I.7 發射度。亮度。

第一部分 電子束

1 帶電粒子在外部靜電和靜磁場中的運動

1.1 引言

1.2 帶電粒子的能量

1.3 潛能-速度關係(靜態場)

1.4 線性電場中的電子 e0E = kx

1.5 在均勻靜態場中的電子運動

1.6 在弱不均勻靜態場中的電子運動

1.6.1 作用於運動帶電粒子的電磁場的小變化

1.7 在具有軸對稱和平面對稱的場中的電子運動。布希定理。

2 電子透鏡

2.1 引言

2.2 莫佩爾原理。電子光學折射率。

2.3 軌跡的微分方程。

2.4 在軸對稱場中的軌跡微分方程。

2.5 在無空間電荷的軸對稱場中的近軸軌跡微分方程。

2.6 近軸軌跡形成的影像。

2.7 靜電軸對稱透鏡。

2.8 磁性軸對稱透鏡。

2.9 軸對稱透鏡的像差。

2.10 靜電透鏡和磁性透鏡的比較。透鏡的傳遞矩陣。

2.11 四極透鏡。

3 具有自場的電子束

3.1 引言

3.2 穩態空間電荷電子束的自洽方程。

3.3 運動方程的歐拉形式。層流的拉格朗日和龐加萊不變量。

3.4 非渦流束。作用函數。平面非相對論二極管。

3.5 自洽方程的解對於曲線空間電荷層流束。梅爾策流。具有傾斜磁場的平面磁控管。德萊登流。

4 電子槍

4.1 引言

4.2 皮爾斯槍設計的綜合方法。

4.3 綜合的內部問題。相對論平面二極管。圓柱形和球形二極管。

4.4 綜合的外部問題。柯西問題。

4.5 對於具有平移對稱的二維曲線束的電極系統的綜合(洛馬克斯-基爾斯坦方法)。磁控管注入槍。

4.6 軸對稱電極系統的綜合。

4.7 具有壓縮束的電子槍。磁控管注入槍。

4.8 爆炸性發射槍。

5 空間電荷束的傳輸

5.1 引言

5.2 在均勻磁場中的無波動軸對稱非相對論束。

5.3 在均勻外部磁場中的無波動相對論束。

5.4 在無限磁場中的圓柱形束。

5.5 離心靜電聚焦。

5.6 軸對稱層流束的近軸光線方程。

5.7 在具有任意陰影的陰極磁場中的均勻磁場中的軸對稱近軸束。

5.8 在空間周期場中的空間電荷束的傳輸。

第二部分 微波真空電子學

6 準靜態微波設備

6.1 引言

6.2 電子間隙中的電流。總電流和肖克利-拉莫定理。

6.3 平面電子間隙的導納。電子間隙作為振盪器。單振盪器。

6.4 自激共振電路的靜態振盪方程。

6.5 空間電荷場的影響。總電流法。在r模式下的高頻二極管。盧埃林-彼得森方程。

7 克萊斯特龍

7.1 引言

7.2 電子束的速度調制。

7.3 簡單的束流理論。

7.4 一個束流與捕獲場的相互作用。雙腔克萊斯特龍的輸出功率。

7.5 雙共振放大器和頻率倍增克萊斯特龍的實驗特性。

7.6 在速度調制束中的空間電荷波。

7.7 多腔和多束克萊斯特龍放大器。

7.8 相對論克萊斯特龍。

7.9 反射克萊斯特龍。

8 行波管和反向波振盪器(O型管)

8.1 引言

8.2 行波管中束流和能量輸出的定性機制。

8.3 慢波結構。

8.4 慢波結構理論的元素。

8.5 非相對論行波管的線性理論。色散方程、增益、非同步效應、空間電荷和慢波結構中的損失。

8.6 非相對論行波管中的非線性效應。提高行波管效率(速度漸變、降低收集器)。