買這商品的人也買了...
-
$2,280$2,166 -
$350$277 -
$880$695 -
$880$695 -
$650$514 -
$780$663 -
$580$458 -
$650$507 -
$550$468 -
$980$774 -
$650$507 -
$480$379 -
$720$569 -
$1,200$948 -
$350$277 -
$350$298 -
$990$891 -
$600$480 -
$1,362Fundamentals of Data Structures in C, 2/e (Paperback)
-
$1,421C Programming: A Modern Approach, 2/e (Paperback)
-
$420$332 -
$1,029Introduction to 80x86 Assembly Language and Computer Architecture (Hardcover) 書況較舊,書側有霉斑)
-
$580$458 -
$650$618 -
$320$253
相關主題
商品描述
Description
A new and innovative paradigm for RF frequency synthesis and wireless transmitter design
Learn the techniques for designing and implementing an all-digital RF frequency synthesizer. In contrast to traditional RF techniques, this innovative book sets forth digitally intensive design techniques that lead the way to the development of low-cost, low-power, and highly integrated circuits for RF functions in deep submicron CMOS processes. Furthermore, the authors demonstrate how the architecture enables readers to integrate an RF front-end with the digital back-end onto a single silicon die using standard ASIC design flow.
Taking a bottom-up approach that progressively builds skills and knowledge, the book begins with an introduction to basic concepts of frequency synthesis and then guides the reader through an all-digital RF frequency synthesizer design:
- Chapter 2 presents a digitally controlled oscillator (DCO), which is the foundation of a novel architecture, and introduces a time-domain model used for analysis and VHDL simulation
- Chapter 3 adds a hierarchical layer of arithmetic abstraction to the DCO that makes it easier to operate algorithmically
- Chapter 4 builds a phase correction mechanism around the DCO such that the system's frequency drift or wander performance matches that of the stable external frequency reference
- Chapter 5 presents an application of the all-digital RF synthesizer
- Chapter 6 describes the behavioral modeling and simulation methodology used in design
The final chapter presents the implementation of a full transmitter and experimental results. The novel ideas presented here have been implemented and proven in two high-volume, commercial single-chip radios developed at Texas Instruments: Bluetooth and GSM.
While the focus of the book is on RF frequency synthesizer design, the techniques can be applied to the design of other digitally assisted analog circuits as well. This book is a must-read for students and engineers who want to learn a new paradigm for RF frequency synthesis and wireless transmitter design using digitally intensive design techniques.
Table of Contents
PREFACE.
1 INTRODUCTION.
1.1 Frequency Synthesis.
1.1.1 Noise in Oscillators.
1.1.2 Frequency Synthesis Techniques.
1.2 Frequency Synthesizer as an Integral Part of an RF Transceiver.
1.2.1 Transmitter.
1.2.2 Receiver.
1.2.3 Toward Direct Transmitter Modulation.
1.3 Frequency Synthesizers for Mobile Communications.
1.3.1 Integer-N PLL Architecture.
1.3.2 Fractional-N PLL Architecture.
1.3.3 Toward an All-Digital PLL Approach.
1.4 Implementation of an RF Synthesizer.
1.4.1 CMOS vs. Traditional RF Process Technologies.
1.4.2 Deep-Submicron CMOS.
1.4.3 Digitally Intensive Approach.
1.4.4 System Integration.
1.4.5 System Integration Challenges for Deep-Submicron CMOS.
2 DIGITALLY CONTROLLED OSCILLATOR.
2.1 Varactor in a Deep-Submicron CMOS Process.
2.2 Fully Digital Control of Oscillating Frequency.
2.3 LC Tank.
2.4 Oscillator Core.
2.5 Open-Loop Narrowband Digital-to-Frequency Conversion.
2.6 Example Implementation.
2.7 Time-Domain Mathematical Model of a DCO.
2.8 Summary.
3 NORMALIZED DCO.
3.1 Oscillator Transfer Function and Gain.
3.2 DCO Gain Estimation.
3.3 DCO Gain Normalization.
3.4 Principle of Synchronously Optimal DCO Tuning Word Retiming.
3.5 Time Dithering of DCO Tuning Input.
3.5.1 Oscillator Tune Time Dithering Principle.
3.5.2 Direct Time Dithering of Tuning Input.
3.5.3 Update Clock Dithering Scheme.
3.6 Implementation of PVT and Acquisition DCO Bits.
3.7 Implementation of Tracking DCO Bits
3.7.1 High-Speed Dithering of Fractional Varactors.
3.7.2 Dynamic Element Matching of Varactors.
3.7.3 DCO Varactor Rearrangement.
3.8 Time-Domain Model.
3.9 Summary.
4 ALL-DIGITAL PHASE-LOCKED LOOP.
4.1 Phase-Domain Operation.
4.2 Reference Clock Retiming.
4.3 Phase Detection.
4.3.1 Difference Mode of ADPLL Operation.
4.3.2 Integer-Domain Operation.
4.4 Modulo Arithmetic of the Reference and Variable Phases.
4.4.1 Variable-Phase Accumulator (PV Block).
4.5 Time-to-Digital Converter.
4.5.1 Frequency Reference Edge Estimation.
4.6 Fractional Error Estimator.
4.6.1 Fractional-Division Ratio Compensation.
4.6.2 TDC Resolution Effect on Estimated Frequency Resolution.
4.6.3 Active Removal of Fractional Spurs Through TDC (Optional).
4.7 Frequency Reference Retiming by a DCO Clock.
4.7.1 Sense Amplifier–Based Flip-Flop.
4.7.2 General Idea of Clock Retiming.
4.7.3 Implementation.
4.7.4 Time-Deferred Calculation of the Variable Phase (Optional).
4.8 Loop Gain Factor.
4.8.1 Phase-Error Dynamic Range.
4.9 Phase-Domain ADPLL Architecture.
4.9.1 Close-in Spurs Due to Injection Pulling.
4.10 PLL Frequency Response.
4.10.1 Conversion Between the s- and z-Domains.
4.11 Noise and Error Sources.
4.11.1 TDC Resolution Effect on Phase Noise.
4.11.2 Phase Noise Due to DCO SD Dithering.
4.12 Type II ADPLL.
4.12.1 PLL Frequency Response of a Type II Loop.
4.13 Higher-Order ADPLL.
4.13.1 PLL Stability Analysis.
4.14 Nonlinear Differential Term of an ADPLL.
4.14.1 Quality Monitoring of an RF Clock.
4.15 DCO Gain Estimation Using a PLL.
4.16 Gear Shifting of PLL Gain.
4.16.1 Autonomous Gear-Shifting Mechanism.
4.16.2 Extended Gear-Shifting Scheme with Zero-Phase Restart.
4.17 Edge Skipping Dithering Scheme (Optional).
4.18 Summary.
5 APPLICATION: ADPLL-BASED TRANSMITTER.
5.1 Direct Frequency Modulation of a DCO.
5.1.1 Discrete-Time Frequency Modulation.
5.1.2 Hybrid of Predictive/Closed PLL Operation.
5.1.3 Effect of FREF/CKR Clock Misalignment.
5.2 Just-in-Time DCO Gain Calculation.
5.3 GFSK Pulse Shaping of Transmitter Data.
5.3.1 Interpolative Filter Operation.
5.4 Power Amplifier.
5.5 Digital Amplitude Modulation.
5.5.1 Discrete Pulse-Slimming Control.
5.5.2 Regulation of Transmitting Power.
5.5.3 Tuning Word Adjustment.
5.5.4 Fully Digital Amplitude Control.
5.6 Going Forward: Polar Transmitter.
5.6.1 Generic Modulator.
5.6.2 Polar TX Realization.
5.7 Summary.
6 BEHAVIORAL MODELING AND SIMULATION.
6.1 Simulation Methodology.
6.2 Digital Blocks.
6.3 Support of Digital Stream Processing.
6.4 Random Number Generator.
6.5 Time-Domain Modeling of DCO Phase Noise.
6.5.1 Modeling Oscillator Jitter.
6.5.2 Modeling Oscillator Wander.
6.5.3 Modeling Oscillator Flicker (1/f ) Noise.
6.5.4 Clock Edge Divider Effects.
6.5.5 VHDL Model Realization of a DCO.
6.5.6 Support of Physical KDCO.
6.6 Modeling Metastability in Flip-Flops.
6.7 Simulation Results.
6.7.1 Time-Domain Simulations.
6.7.2 Frequency-Deviation Simulations.
6.7.3 Phase-Domain Simulations of Transmitters.
6.7.4 Synthesizer Phase-Noise Simulations.
6.8 Summary.
7 IMPLEMENTATION AND EXPERIMENTAL RESULTS.
7.1 DSP and Its RF Interface to DRP.
7.2 Transmitter Core Implementation.
7.3 IC Chip.
7.4 Evaluation Board.
7.5 Measurement Equipment.
7.6 GFSK Transmitter Performance.
7.7 Synthesizer Performance.
7.8 Synthesizer Switching Transients.
7.9 DSP-Driven Modulation.
7.10 Performance Summary.
7.11 Summary.
APPENDIX A: SPURS DUE TO DCO SWITCHING.
A.1 Spurs Due to DCO Modulation.
APPENDIX B: GAUSSIAN PULSE-SHAPING FILTER.
APPENDIX C: VHDL SOURCE CODE.
C.1 DCO Level 2.
C.2 Period-Controlled Oscillator.
C.3 Tactical Flip-Flop.
C.4 TDC Pseudo-Thermometer Output Decoder.
REFERENCES.
INDEX.
商品描述(中文翻譯)
**描述**
一種全新且創新的射頻頻率合成與無線發射器設計範式。學習設計和實現全數位射頻頻率合成器的技術。與傳統射頻技術相比,這本創新書籍提出了數位密集的設計技術,為在深亞微米CMOS製程中開發低成本、低功耗和高度集成的射頻功能電路鋪平了道路。此外,作者展示了如何利用這種架構,讓讀者能夠將射頻前端與數位後端整合到單一的矽晶片上,使用標準的ASIC設計流程。
本書採取自下而上的方法,逐步建立技能和知識,首先介紹頻率合成的基本概念,然後引導讀者進行全數位射頻頻率合成器的設計:
- 第2章介紹數位控制振盪器(DCO),這是新穎架構的基礎,並介紹用於分析和VHDL模擬的時域模型。
- 第3章為DCO增加了一層層次化的算術抽象,使其更容易以演算法操作。
- 第4章圍繞DCO建立了一個相位修正機制,使系統的頻率漂移或波動性能與穩定的外部頻率參考相匹配。
- 第5章介紹全數位射頻合成器的應用。
- 第6章描述設計中使用的行為建模和模擬方法論。
最後一章介紹完整發射器的實現及實驗結果。這裡提出的新穎想法已在德州儀器開發的兩款高產量商用單晶片無線電(藍牙和GSM)中實現並證明。
雖然本書的重點在於射頻頻率合成器的設計,但這些技術也可以應用於其他數位輔助類比電路的設計。這本書是希望學習使用數位密集設計技術進行射頻頻率合成和無線發射器設計的新範式的學生和工程師的必讀書籍。
**目錄**
前言
1 介紹
1.1 頻率合成
1.1.1 振盪器中的噪聲
1.1.2 頻率合成技術
1.2 頻率合成器作為射頻收發器的組成部分
1.2.1 發射器
1.2.2 接收器
1.2.3 朝向直接發射器調變
1.3 用於移動通信的頻率合成器
1.3.1 整數-N PLL架構
1.3.2 分數-N PLL架構
1.3.3 朝向全數位PLL方法
1.4 射頻合成器的實現
1.4.1 CMOS與傳統射頻製程技術
1.4.2 深亞微米CMOS
1.4.3 數位密集方法
1.4.4 系統整合
1.4.5 深亞微米CMOS的系統整合挑戰
2 數位控制振盪器
2.1 深亞微米CMOS製程中的變容二極體
2.2 完全數位控制的振盪頻率
2.3 LC Tank
2.4 振盪器核心
2.5 開環窄帶數位到頻率轉換
2.6 實例實現
2.7 DCO的時域數學模型
2.8 總結
3 正規化DCO
3.1 振盪器轉移函數和增益
3.2 DCO增益估算
3.3 DCO增益正規化
3.4 同步最佳DCO調諧字重定時原理
3.5 DCO調諧輸入的時間抖動
3.5.1 振盪器調諧時間抖動原理
3.5.2 調諧輸入的直接時間抖動
3.5.3 更新時鐘抖動方案
3.6 PVT和獲取DCO位的實現
3.7 追蹤DCO位的實現
3.7.1 分數變容二極體的高速抖動
3.7.2 變容二極體的動態元件匹配
3.7.3 DCO變容二極體的重新排列
3.8 時域模型
3.9 總結
4 全數位相位鎖定迴路
4.1 相位域操作
4.2 參考時鐘重定時
4.3 相位檢測
4.3.1 ADPLL操作的差分模式
4.3.2 整數域操作
4.4 參考和變量相位的模算術
4.4.1 變量相位累加器(PV區塊)
4.5 時間到數位轉換器
4.5.1 頻率參考邊緣估算
4.6 分數誤差估算
4.6.1 分數除法比率補償
4.6.2 TDC解析度對估算頻率解析度的影響
4.6.3 通過TDC主動去除分數雜訊(可選)
4.7 通過DCO時鐘的頻率參考重定時
4.7.1 基於感測放大器的觸發器
4.7.2 時鐘重定時的一般思路
4.7.3 實現
4.7.4 變量相位的時間延遲計算(可選)
4.8 迴路增益因子
4.8.1 相位誤差動態範圍
4.9 相位域ADPLL架構
4.9.1 由於注入拉動而產生的近端雜訊
4.10 PLL頻率響應
4.10.1 s域與z域之間的轉換
4.11 噪聲和誤差來源
4.11.1 TDC解析度對相位噪聲的影響
4.11.2 由DCO SD抖動引起的相位噪聲
4.12 II型ADPLL
4.12.1 II型迴路的PLL頻率響應
4.13 高階ADPLL
4.13.1 PLL穩定性分析
4.14 ADPLL的非線性微分項
4.14.1 射頻時鐘的質量監控
4.15 使用PLL的DCO增益估算
4.16 PLL增益的齒輪變換
4.16.1 自主齒輪變換機制
4.16.2 具有零相位重啟的擴展齒輪變換方案
4.17 邊緣跳過抖動方案(可選)
4.18 總結
5 應用:基於ADPLL的發射器