Discovering Knowledge in Data: An Introduction to Data Mining
暫譯: 數據挖掘入門:發現數據中的知識

Daniel T. Larose

買這商品的人也買了...

相關主題

商品描述

Description:

Learn Data Mining by doing data mining
Data mining can be revolutionary-but only when it's done right. The powerful black box data mining software now available can produce disastrously misleading results unless applied by a skilled and knowledgeable analyst. Discovering Knowledge in Data: An Introduction to Data Mining provides both the practical experience and the theoretical insight needed to reveal valuable information hidden in large data sets.
Employing a "white box" methodology and with real-world case studies, this step-by-step guide walks readers through the various algorithms and statistical structures that underlie the software and presents examples of their operation on actual large data sets. Principal topics include:
* Data preprocessing and classification
* Exploratory analysis
* Decision trees
* Neural and Kohonen networks
* Hierarchical and k-means clustering
* Association rules
* Model evaluation techniques
Complete with scores of screenshots and diagrams to encourage graphical learning, Discovering Knowledge in Data: An Introduction to Data Mining gives students in Business, Computer Science, and Statistics as well as professionals in the field the power to turn any data warehouse into actionable knowledge. 

 

Table of Contents:

Preface.

1. An Introduction to Data Mining.

2. Data Preprocessing.

3. Exploratory Data Analysis.

4. Statistical Approaches to Estimation and Prediction.

5. k-Nearest Neighbor.

6. Decision Trees.

7. Neural Networks.

8. Hierarchical and k-Means Clustering.

9. Kohonen networks.

10. Association Rules.

11. Model Evaluation Techniques.

Epilogue: "We've Only Just Begun".

Index. 

商品描述(中文翻譯)

**描述:**
透過實作資料探勘來學習資料探勘
資料探勘可以是革命性的,但只有在正確執行時才會如此。現在可用的強大黑箱資料探勘軟體,若未由熟練且具知識的分析師應用,可能會產生災難性且具誤導性的結果。《在資料中發現知識:資料探勘入門》提供了揭示大型資料集隱藏的有價值資訊所需的實務經驗和理論見解。
本書採用「白箱」方法論,並結合實際案例研究,逐步引導讀者了解支撐軟體的各種演算法和統計結構,並展示它們在實際大型資料集上的運作範例。主要主題包括:
* 資料預處理與分類
* 探索性分析
* 決策樹
* 神經網路與Kohonen網路
* 階層式與K均值聚類
* 關聯規則
* 模型評估技術
本書附有大量截圖和圖表以促進圖形學習,讓商業、計算機科學和統計學的學生以及該領域的專業人士能夠將任何資料倉庫轉化為可行的知識。

**目錄:**
前言。
1. 資料探勘簡介。
2. 資料預處理。
3. 探索性資料分析。
4. 統計估計與預測方法。
5. k-最近鄰。
6. 決策樹。
7. 神經網路。
8. 階層式與k-均值聚類。
9. Kohonen網路。
10. 關聯規則。
11. 模型評估技術。
尾聲:『我們才剛開始』。
索引。