Applied Data Mining: Statistical Methods for Business and Industry (Paperback)
暫譯: 應用數據挖掘:商業與工業的統計方法 (平裝本)

Paolo Giudici

  • 出版商: Wiley
  • 出版日期: 2003-10-31
  • 售價: $969
  • 語言: 英文
  • 頁數: 376
  • 裝訂: Paperback
  • ISBN: 0470846798
  • ISBN-13: 9780470846797
  • 相關分類: Data-mining
  • 已絕版

買這商品的人也買了...

相關主題

商品描述

The increasing availability of data in the current information society has led to the need for valid tools for its modelling and analysis. Data mining and applied statistical methods are the appropriate tools to extract knowledge from such data. Applied Data Mining: Statistical Methods for Business and Industry provides an accessible introduction to data mining methods in a consistent and application-oriented statistical framework. It describes six case studies, taken from real industry projects, highlighting the current applications of data mining methods.

  • Provides an introduction to data mining methods and applications.

  • Includes coverage of classical and Bayesian multivariate statistical methodology as well as of machine learning and computational data mining methods.

  • Includes many recent developments, such as association and sequence rules, graphical Markov models, memory-based reasoning, credit risk and web mining.

  • Features a number of detailed case studies based on applied projects within industry.

  • Incorporates discussion of data mining software, and the case studies are analysed using SAS and SAS Enterprise Miner.

  • Accessible to anyone with a basic knowledge of statistics or data analysis.

  • Includes an extensive bibliography and pointers to further reading within the text.

Applied Data Mining: Statistical Methods for Business and Industry is primarily aimed at advanced undergraduate and graduate students of data mining, applied statistics, database management, computer science and economics. The case studies give guidance to professionals working in industry on projects involving large volumes of data, such as in customer relationship management, web design, risk management, marketing, economics and finance.

Table of Contents

Preface.

1. Introduction.

PART I: METHODOLOGY.

2. Organisation of the data.

3. Exploratory data analysis.

4. Computational data mining.

5. Statistical data mining.

6. Evaluation of data mining methods.

PART II: BUSINESS CASES.

7. Market basket analysis.

8. Web clickstream analysis.

9. Profiling website visitors.

10. Customer relationship management.

11. Credit scoring.

12. Forecasting television audience.

Bibliography.

Index.

商品描述(中文翻譯)


在當前資訊社會中,數據的日益可用性導致了對有效建模和分析工具的需求。資料探勘和應用統計方法是從這些數據中提取知識的適當工具。應用資料探勘:商業與產業的統計方法提供了一個易於理解的資料探勘方法介紹,並在一致且以應用為導向的統計框架中進行說明。它描述了六個來自真實產業專案的案例研究,突顯了資料探勘方法的當前應用。



  • 提供資料探勘方法和應用的介紹。



  • 涵蓋經典和貝葉斯多變量統計方法,以及機器學習和計算資料探勘方法。



  • 包括許多近期發展,如關聯規則和序列規則、圖形馬可夫模型、基於記憶的推理、信用風險和網路探勘。



  • 特別介紹了基於產業應用專案的多個詳細案例研究。



  • 納入資料探勘軟體的討論,案例研究使用SAS和SAS Enterprise Miner進行分析。



  • 對於具備基本統計或資料分析知識的任何人都易於理解。



  • 包括廣泛的參考書目和進一步閱讀的指引。


應用資料探勘:商業與產業的統計方法主要針對資料探勘、應用統計、資料庫管理、計算機科學和經濟學的高年級本科生和研究生。這些案例研究為在產業中處理大量數據的專業人士提供指導,例如在客戶關係管理、網頁設計、風險管理、行銷、經濟學和金融等專案中。


目錄

前言。


1. 介紹。


第一部分:方法論。


2. 數據的組織。


3. 探索性數據分析。


4. 計算資料探勘。


5. 統計資料探勘。


6. 資料探勘方法的評估。


第二部分:商業案例。


7. 市場籃分析。


8. 網頁點擊流分析。


9. 網站訪客的輪廓分析。


10. 客戶關係管理。


11. 信用評分。


12. 電視觀眾預測。


參考書目。


索引。


最後瀏覽商品 (20)