Probability: Modeling and Applications to Random Processes (Hardcover)
暫譯: 機率:隨機過程的建模與應用 (精裝版)

Gregory K. Miller

  • 出版商: Wiley
  • 出版日期: 2006-08-01
  • 定價: $1,100
  • 售價: 9.5$1,045
  • 語言: 英文
  • 頁數: 488
  • 裝訂: Hardcover
  • ISBN: 0471458929
  • ISBN-13: 9780471458920
  • 相關分類: 機率統計學 Probability-and-statistics
  • 立即出貨 (庫存=1)

買這商品的人也買了...

商品描述

Description

Improve Your Probability of Mastering This Topic

This book takes an innovative approach to calculus-based probability theory, considering it within a framework for creating models of random phenomena. The author focuses on the synthesis of stochastic models concurrent with the development of distribution theory while also introducing the reader to basic statistical inference. In this way, the major stochastic processes are blended with coverage of probability laws, random variables, and distribution theory, equipping the reader to be a true problem solver and critical thinker.

Deliberately conversational in tone, Probability is written for students in junior- or senior-level probability courses majoring in mathematics, statistics, computer science, or engineering. The book offers a lucid and mathematicallysound introduction to how probability is used to model random behavior in the natural world. The text contains the following chapters:
* Modeling
* Sets and Functions
* Probability Laws I: Building on the Axioms
* Probability Laws II: Results of Conditioning
* Random Variables and Stochastic Processes
* Discrete Random Variables and Applications in Stochastic Processes
* Continuous Random Variables and Applications in Stochastic Processes
* Covariance and Correlation Among Random Variables

Included exercises cover a wealth of additional concepts, such as conditional independence, Simpson's paradox, acceptance sampling, geometric probability, simulation, exponential families of distributions, Jensen's inequality, and many non-standard probability distributions.

 

Table of Contents

Preface.

To the Student.

To the Instructor.

Coverage.

Acknowledgments.

Chapter 1. Modeling.

1.1  Choice and Chance.

1.2  The Model Building Process.

1.3  Modeling in the Mathematical Sciences.

1.4  A First Look at a Probability Model: The Random Walk.

1.5  Brief Applications of Random Walks.

Exercises.

Chapter 2.  Sets and Functions.

2.1  Operations with Sets.

2.2  Functions.

2.3  The Probability Function and the Axioms of Probability.

2.4  Equally Likely Sample Spaces and Counting Rules.

Rules.

Exercises.

Chapter 3.  Probility Laws I: Building on the Axioms.

3.1  The Complement Rule.

3.2  The Addition Rule.

3.3  Extensions and Additional Results.

Exercises.

Chapter 4.  Probility Laws II: Results of Conditioning.

4.1  Conditional Probability and the Multiplication Rule.

4.2  Independent Events.

4.3  The Theorem of Total Probabilities and Bayes' Rule.

4.4  Problems of Special Interest: Effortful Illustrations of the Probability Laws.

Exercises.

Chapter 5.  Random Variables and  Stochastic Processes.

5.1  Roles and Types of Random Variables.

5.2  Expectation.

5.3  Roles, Types, and Characteristics of  Stochastic Processes.

Exercises.

Chapter 6.  Discrete Random Variables and Applications in Stochastic Processes.

6.1  The Bernoulli and Binomial Models.

6.2  The Hypergeometric Model.

6.3  The Poisson Model.

6.4  The Geometric and Negative Binomial.

Models.

Exercises.

Chapter 7.  Continuous Random Variables and Applications in Stochastic Processes.

7.1  The Continuous Uniform Model.

7.2  The Exponential Model.

7.3  The Gamma Model.

7.4  The Normal Model.

Chapter 8.  Covariance and Correlation Among Random Variables.

8.1  Joint, Marginal and Conditional Distributions.

8.2  Covariance and Correlation.

8.3  Brief  Examples and Illustrations in Stochastic Processes and Times Series.

Exercises.

Bibliography.

Tables.

Index.

商品描述(中文翻譯)

**描述**
提高您掌握此主題的機率
本書採用創新的方法來探討基於微積分的機率理論,並將其置於隨機現象模型創建的框架內。作者專注於隨機模型的綜合,與分佈理論的發展並行,同時向讀者介紹基本的統計推斷。這樣,主要的隨機過程與機率法則、隨機變數和分佈理論的內容相結合,使讀者能夠成為真正的問題解決者和批判性思考者。
本書的語氣故意採取對話式,適合數學、統計學、計算機科學或工程專業的本科生或研究生的機率課程。該書提供了一個清晰且數學上合理的介紹,說明機率如何用於建模自然界中的隨機行為。文本包含以下章節:
* 建模
* 集合與函數
* 機率法則 I:基於公理的建立
* 機率法則 II:條件結果
* 隨機變數與隨機過程
* 離散隨機變數及其在隨機過程中的應用
* 連續隨機變數及其在隨機過程中的應用
* 隨機變數之間的協方差與相關性

包含的練習涵蓋了大量額外的概念,例如條件獨立性、辛普森悖論、接受抽樣、幾何機率、模擬、指數分佈族、詹森不等式以及許多非標準機率分佈。

**目錄**
前言
致學生
致講師
內容概述
致謝
第一章:建模
1.1 選擇與機會
1.2 模型建立過程
1.3 數學科學中的建模
1.4 機率模型的初步觀察:隨機漫步
1.5 隨機漫步的簡要應用
練習
第二章:集合與函數
2.1 集合的運算
2.2 函數
2.3 機率函數與機率公理
2.4 同樣可能的樣本空間與計數規則
練習
第三章:機率法則 I:基於公理的建立
3.1 補集法則
3.2 加法法則
3.3 擴展與附加結果
練習
第四章:機率法則 II:條件結果
4.1 條件機率與乘法法則
4.2 獨立事件
4.3 總機率定理與貝葉斯法則
4.4 特別關注的問題:機率法則的努力示例
練習
第五章:隨機變數與隨機過程
5.1 隨機變數的角色與類型
5.2 期望
5.3 隨機過程的角色、類型與特徵
練習
第六章:離散隨機變數及其在隨機過程中的應用
6.1 伯努利與二項模型
6.2 超幾何模型
6.3 泊松模型
6.4 幾何與負二項模型
練習
第七章:連續隨機變數及其在隨機過程中的應用
7.1 連續均勻模型
7.2 指數模型
7.3 伽瑪模型
7.4 常態模型
第八章:隨機變數之間的協方差與相關性
8.1 聯合、邊際與條件分佈
8.2 協方差與相關性
8.3 隨機過程與時間序列中的簡要示例與插圖
練習
參考文獻
表格
索引