Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design (Hardcover)
暫譯: 基於電荷的MOS晶體管模型:低功耗與射頻IC設計的EKV模型(精裝版)

Christian C. Enz, Eric A. Vittoz

  • 出版商: Wiley
  • 出版日期: 2006-09-01
  • 售價: $1,140
  • 語言: 英文
  • 頁數: 328
  • 裝訂: Hardcover
  • ISBN: 047085541X
  • ISBN-13: 9780470855416
  • 已絕版

買這商品的人也買了...

相關主題

商品描述

Description

Modern, large-scale analog integrated circuits (ICs) are essentially composed of metal-oxide semiconductor (MOS) transistors and their interconnections. As technology scales down to deep sub-micron dimensions and supply voltage decreases to reduce power consumption, these complex analog circuits are even more dependent on the exact behavior of each transistor. High-performance analog circuit design requires a very detailed model of the transistor, describing accurately its static and dynamic behaviors, its noise and matching limitations and its temperature variations. The charge-based EKV (Enz-Krummenacher-Vittoz) MOS transistor model for IC design has been developed to provide a clear understanding of the device properties, without the use of complicated equations. All the static, dynamic, noise, non-quasi-static models are completely described in terms of the inversion charge at the source and at the drain taking advantage of the symmetry of the device. Thanks to its hierarchical structure, the model offers several coherent description levels, from basic hand calculation equations to complete computer simulation model. It is also compact, with a minimum number of process-dependant device parameters.

Written by its developers, this book provides a comprehensive treatment of the EKV charge-based model of the MOS transistor for the design and simulation of low-power analog and RF ICs. Clearly split into three parts, the authors systematically examine:

  • the basic long-channel intrinsic charge-based model, including all the fundamental aspects of the EKV MOST model such as the basic large-signal static model, the noise model, and a discussion of temperature effects and matching properties;
  • the extended charge-based model, presenting important information for understanding the operation of deep-submicron devices;
  • the high-frequency model, setting out a complete MOS transistor model required for designing RF CMOS integrated circuits.

Practising engineers and circuit designers in the semiconductor device and electronics systems industry will find this book a valuable guide to the modelling of MOS transistors for integrated circuits. It is also a useful reference for advanced students in electrical and computer engineering.

 

Table of Contents

Foreword.

Preface.

List of Symbols.

1. Introduction.

1.1 The Importance of Device Modeling for IC Design.

1.2 A Short History of the EKV MOST Model.

1.3 The Book Structure.

PART I: THE BASIC LONG-CHANNELINTRINSIC CHARGE-BASED MODEL.

2. Introduction.

2.1 The N-channel Transistor Structure.

2.2 Definition of charges, current, potential and electric fields.

2.3 Transistor symbol and P-channel transistor.

3. The Basic Charge Model.

3.1 Poisson’s Equation and Gradual Channel Approximation.

3.2 Surface potential as a Function of Gate Voltage.

3.3 Gate Capacitance.

3.4 Charge Sheet Approximation.

3.5 Density of Mobile Inverted Charge.

3.6 Charge-Potential Linearization.

4. Static Drain Current.

4.1 Drain Current Expression.

4.2 Forward and Reverse Current Components.

4.3 Modes of Operation.

4.4 Model of Drain Current Based on Charge Linearization.

4.5 Fundamental Property: Validity and Application.

4.6 Channel Length Modulation.

5. The Small-Signal Model.

5.1 The Static Small-Signal Model.

5.2 A General Non-Quasi-Static Small-Signal Model.

5.3 The Quasi-Static Dynamic Small-Signal Model.

6. The Noise Model.

6.1 Noise Calculation Methods.

6.2 Low-Frequency Channel Thermal Noise.

6.3 Flicker Noise.

6.4 Appendices.

Appendix : The Nyquist and Bode Theorems.

Appendix : General Noise Expression.

7. Temperature Effects and Matching.

7.1 Introduction.

7.2 Temperature Effects.

PART II: THE EXTENDED CHARGE-BASED MODEL.

8. Non-Ideal Effects Related to the Vertical Dimension.

8.1 Introduction.

8.2 Mobility Reduction Due to the Vertical Field.

8.3 Non-Uniform Vertical Doping.

8.4 Polysilicon Depletion.

8.4.1 Definition of the Effect.

8.5 Band Gap Widening.

8.6 Gate Leakage Current.

9. Short-Channel Effects.

9.1 Velocity Saturation.

9.2 Channel Length Modulation.

9.3 Drain Induced Barrier Lowering.

9.4 Short-Channel Thermal Noise Model.

10. The Extrinsic Model.

10.1 Extrinsic Part of the Device.

10.2 Access Resistances.

10.3 Overlap Regions.

10.4 Source and Drain Junctions.

10.5 Extrinsic Noise Sources.

PART III: THE HIGH-FREQUENCY MODEL.

11. Equivalent Circuit at RF.

11.1 RF MOS Transistor Structure and Layout.

11.2 What Changes at RF?.

11.3 Transistor Figures of Merit.

11.4 Equivalent Circuit at RF.

12. The Small-Signal Model at RF.

12.1 The Equivalent Small-Signal Circuit at RF.

12.2 Y-Parameters Analysis.

12.3 The Large-Signal Model at RF.

13. The Noise Model at RF.

13.1 The HF Noise Parameters.

13.2 The High-Frequency Thermal Noise Model.

13.3 HF Noise Parameters of a Common-Source Amplifier.

References.

Index.

商品描述(中文翻譯)

**描述**

現代的大規模類比集成電路(IC)基本上由金屬氧化物半導體(MOS)晶體管及其互連組成。隨著技術縮小到深亞微米尺寸,供電電壓降低以減少功耗,這些複雜的類比電路對每個晶體管的精確行為依賴性更強。高性能的類比電路設計需要非常詳細的晶體管模型,準確描述其靜態和動態行為、噪聲和匹配限制以及溫度變化。EKV(Enz-Krummenacher-Vittoz)基於電荷的MOS晶體管模型已被開發,以提供對器件特性的清晰理解,而無需使用複雜的方程式。所有靜態、動態、噪聲和非準靜態模型都完全以源極和漏極的反轉電荷來描述,利用了器件的對稱性。得益於其層次結構,該模型提供了幾個一致的描述層次,從基本的手動計算方程到完整的計算機模擬模型。它也很緊湊,所需的工藝依賴性器件參數數量最少。

本書由其開發者撰寫,全面介紹EKV基於電荷的MOS晶體管模型,用於低功耗類比和射頻IC的設計與模擬。書中清晰地分為三個部分,作者系統地檢視:

- 基本的長通道內在基於電荷的模型,包括EKV MOS模型的所有基本方面,如基本的大信號靜態模型、噪聲模型,以及對溫度效應和匹配特性的討論;
- 擴展的基於電荷的模型,提供理解深亞微米器件操作的重要信息;
- 高頻模型,提出設計射頻CMOS集成電路所需的完整MOS晶體管模型。

在半導體器件和電子系統行業的工程師和電路設計師將發現本書是對MOS晶體管建模的寶貴指南。它也是電氣和計算機工程高級學生的有用參考。

**目錄**

前言
序言
符號列表
1. 介紹
1.1 IC設計中器件建模的重要性
1.2 EKV MOS模型的簡短歷史
1.3 本書結構
第一部分:基本的長通道內在基於電荷的模型
2. 介紹
2.1 N通道晶體管結構
2.2 電荷、電流、電位和電場的定義
2.3 晶體管符號和P通道晶體管
3. 基本電荷模型
3.1 泊松方程和漸進通道近似
3.2 表面電位作為閘極電壓的函數
3.3 閘極電容
3.4 電荷片近似
3.5 可移動反轉電荷的密度
3.6 電荷-電位線性化
4. 靜態漏電流
4.1 漏電流表達式
4.2 正向和反向電流分量
4.3 操作模式
4.4 基於電荷線性化的漏電流模型
4.5 基本特性:有效性和應用
4.6 通道長度調變
5. 小信號模型
5.1 靜態小信號模型
5.2 一般非準靜態小信號模型
5.3 準靜態動態小信號模型
6. 噪聲模型
6.1 噪聲計算方法
6.2 低頻通道熱噪聲
6.3 低頻噪聲
6.4 附錄
附錄:奈奎斯特和波德定理
附錄:一般噪聲表達式
7. 溫度效應和匹配
7.1 介紹
7.2 溫度效應
第二部分:擴展的基於電荷的模型
8. 與垂直維度相關的非理想效應
8.1 介紹
8.2 由於垂直電場導致的遷移率降低
8.3 不均勻的垂直摻雜
8.4 多晶矽耗竭
8.4.1 效應的定義
8.5 能隙擴大
8.6 閘極漏電流
9. 短通道效應
9.1 速度飽和
9.2 通道長度調變
9.3 漏極誘導的障礙降低
9.4 短通道熱噪聲模型
10. 外部模型
10.1 器件的外部部分
10.2 接入電阻
10.3 重疊區域
10.4 源極和漏極接面
10.5 外部噪聲源
第三部分:高頻模型
11. 射頻等效電路
11.1 射頻MOS晶體管結構和佈局
11.2 射頻下的變化
11.3 晶體管性能指標
11.4 射頻下的等效電路
12. 射頻下的小信號模型
12.1 射頻下的等效小信號電路
12.2 Y參數分析
12.3 射頻下的大信號模型
13. 射頻下的噪聲模型
13.1 高頻噪聲參數
13.2 高頻熱噪聲模型
13.3 共源放大器的高頻噪聲參數
參考文獻
索引