Machine Learning: The New AI (The MIT Press Essential Knowledge series)
暫譯: 機器學習:新一代人工智慧(麻省理工學院出版社基本知識系列)
Ethem Alpaydin
- 出版商: MIT
- 出版日期: 2016-10-07
- 售價: $650
- 貴賓價: 9.8 折 $637
- 語言: 英文
- 頁數: 230
- 裝訂: Paperback
- ISBN: 0262529513
- ISBN-13: 9780262529518
-
相關分類:
人工智慧、Machine Learning
-
相關翻譯:
機器學習 -- 探索人工智慧關鍵 (繁中版)
立即出貨(限量) (庫存=2)
買這商品的人也買了...
-
$480$379 -
$450$356 -
$780$616 -
$980$774 -
$1,700$1,615 -
$390$351 -
$600$540 -
$354$336 -
$580$452 -
$580$458 -
$590$502 -
$580$458 -
$500$395 -
$360$281 -
$580$458 -
$480$379 -
$560$476 -
$320$250 -
$360$284 -
$790$672 -
$450$356 -
$450$356 -
$590$460 -
$390$308 -
$480$379
商品描述
Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition -- as well as some we don't yet use everyday, including driverless cars. It is the basis of the new approach in computing where we do not write programs but collect data; the idea is to learn the algorithms for the tasks automatically from data. As computing devices grow more ubiquitous, a larger part of our lives and work is recorded digitally, and as "Big Data" has gotten bigger, the theory of machine learning -- the foundation of efforts to process that data into knowledge -- has also advanced. In this book, machine learning expert Ethem Alpaydin offers a concise overview of the subject for the general reader, describing its evolution, explaining important learning algorithms, and presenting example applications.
Alpaydin offers an account of how digital technology advanced from number-crunching mainframes to mobile devices, putting today's machine learning boom in context. He describes the basics of machine learning and some applications; the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances, with such applications as customer segmentation and learning recommendations; and reinforcement learning, when an autonomous agent learns act so as to maximize reward and minimize penalty. Alpaydin then considers some future directions for machine learning and the new field of "data science," and discusses the ethical and legal implications for data privacy and security.
商品描述(中文翻譯)
今天,機器學習是我們每天使用的一系列應用的基礎,從產品推薦到語音識別——以及一些我們尚未每天使用的應用,包括無人駕駛汽車。這是計算的新方法的基礎,我們不再編寫程式,而是收集數據;其理念是自動從數據中學習任務的演算法。隨著計算設備變得越來越普及,我們生活和工作的更大部分被數位化記錄,而隨著「大數據」的增長,機器學習的理論——這是將數據處理成知識的努力的基礎——也在不斷進步。在這本書中,機器學習專家 Ethem Alpaydin 為一般讀者提供了該主題的簡明概述,描述了其演變,解釋了重要的學習演算法,並展示了示例應用。
Alpaydin 描述了數位技術如何從數據處理的主機進步到行動裝置,將今天的機器學習熱潮置於背景中。他介紹了機器學習的基本概念和一些應用;機器學習演算法在模式識別中的應用;受人腦啟發的人工神經網絡;學習實例之間關聯的演算法,應用包括客戶細分和學習推薦;以及強化學習,當自主代理學習如何行動以最大化獎勵和最小化懲罰。接著,Alpaydin 考慮了機器學習的一些未來方向以及「數據科學」這一新領域,並討論了數據隱私和安全的倫理及法律影響。