Discriminating Data: Correlation, Neighborhoods, and the New Politics of Recognition
暫譯: 區分數據:相關性、鄰域與新認同政治

Chun, Wendy Hui Kyong, Barnett, Alex

商品描述

How big data and machine learning encode discrimination and create agitated clusters of comforting rage.

In Discriminating Data, Wendy Hui Kyong Chun reveals how polarization is a goal--not an error--within big data and machine learning. These methods, she argues, encode segregation, eugenics, and identity politics through their default assumptions and conditions. Correlation, which grounds big data's predictive potential, stems from twentieth-century eugenic attempts to "breed" a better future. Recommender systems foster angry clusters of sameness through homophily. Users are "trained" to become authentically predictable via a politics and technology of recognition. Machine learning and data analytics thus seek to disrupt the future by making disruption impossible.

Chun, who has a background in systems design engineering as well as media studies and cultural theory, explains that although machine learning algorithms may not officially include race as a category, they embed whiteness as a default. Facial recognition technology, for example, relies on the faces of Hollywood celebrities and university undergraduates--groups not famous for their diversity. Homophily emerged as a concept to describe white U.S. resident attitudes to living in biracial yet segregated public housing. Predictive policing technology deploys models trained on studies of predominantly underserved neighborhoods. Trained on selected and often discriminatory or dirty data, these algorithms are only validated if they mirror this data.

How can we release ourselves from the vice-like grip of discriminatory data? Chun calls for alternative algorithms, defaults, and interdisciplinary coalitions in order to desegregate networks and foster a more democratic big data.

商品描述(中文翻譯)

如何大數據和機器學習編碼歧視並創造激動的安慰憤怒集群

在《歧視數據》中,Wendy Hui Kyong Chun 揭示了極化是一個目標——而非錯誤——在大數據和機器學習中。她主張這些方法通過其預設假設和條件編碼了隔離、優生學和身份政治。相關性,作為大數據預測潛力的基礎,源於二十世紀優生學試圖「培育」更美好未來的努力。推薦系統通過同質性促進了憤怒的相似性集群。用戶被「訓練」成為真實可預測的,這是通過一種認知的政治和技術實現的。因此,機器學習和數據分析試圖通過使擾動變得不可能來顛覆未來。

Chun 擁有系統設計工程、媒體研究和文化理論的背景,她解釋道,儘管機器學習算法可能不正式將種族作為一個類別,但它們將白人性作為預設。例如,面部識別技術依賴於好萊塢名人和大學本科生的面孔——這些群體並不以其多樣性而聞名。同質性作為一個概念出現,用來描述美國白人居民對於生活在雙種族但隔離的公共住房的態度。預測性警務技術部署了基於主要服務不足社區研究訓練的模型。這些算法在選定且通常具有歧視性或不潔數據上進行訓練,只有當它們反映這些數據時,才會被驗證。

我們如何能擺脫歧視數據的緊箍咒?Chun 呼籲尋求替代算法、預設和跨學科聯盟,以便去隔離網絡並促進更民主的大數據。

作者簡介

Wendy Hui Kyong Chun is Simon Fraser University's Canada 150 Research Chair in New Media and Professor of Communication and Director of the SFU Digital Democracies Institute. She is the author of Control and Freedom, Programmed Visions, and Updating to Remain the Same, all published by the MIT Press.

Alex Barnett is Group Leader for Numerical Analysis at the Center for Computational Mathematics at the Flatiron Institute in New York. He has published more than 50 research papers in scientific computing, differential equations, fluids, waves, imaging, physics, neuroscience, and statistics.

作者簡介(中文翻譯)

Wendy Hui Kyong Chun 是西門菲莎大學的加拿大150研究主席,專注於新媒體,並擔任傳播學教授及SFU數位民主研究所所長。她是《Control and Freedom》、《Programmed Visions》和《Updating to Remain the Same》的作者,這些書籍均由麻省理工學院出版社出版。

Alex Barnett 是紐約Flatiron Institute計算數學中心的數值分析組組長。他在科學計算、微分方程、流體、波動、成像、物理學、神經科學和統計學等領域發表了超過50篇研究論文。