Machine Learning, Revised and Updated Edition (Paperback)
暫譯: 機器學習,修訂版與更新版(平裝本)

Ethem Alpaydin

  • 出版商: Summit Valley Press
  • 出版日期: 2021-08-17
  • 售價: $830
  • 貴賓價: 9.5$789
  • 語言: 英文
  • 頁數: 280
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0262542528
  • ISBN-13: 9780262542524
  • 相關分類: Machine Learning
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

A concise overview of machine learning--computer programs that learn from data--the basis of such applications as voice recognition and driverless cars.

Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition--as well as some we don't yet use everyday, including driverless cars. It is the basis for a new approach to artificial intelligence that aims to program computers to use example data or past experience to solve a given problem. In this volume in the MIT Press Essential Knowledge series, Ethem Alpaydin offers a concise and accessible overview of the new AI. This expanded edition offers new material on such challenges facing machine learning as privacy, security, accountability, and bias.

Alpaydin, author of a popular textbook on machine learning, explains that as Big Data has gotten bigger, the theory of machine learning--the foundation of efforts to process that data into knowledge--has also advanced. He describes the evolution of the field, explains important learning algorithms, and presents example applications. He discusses the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances; and reinforcement learning, when an autonomous agent learns to take actions to maximize reward. In a new chapter, he considers transparency, explainability, and fairness, and the ethical and legal implications of making decisions based on data.

商品描述(中文翻譯)

機器學習的簡明概述——從數據中學習的計算機程序——是語音識別和無人駕駛汽車等應用的基礎。

如今,機器學習是我們每天使用的一系列應用的基礎,從產品推薦到語音識別——以及一些我們尚未每天使用的應用,包括無人駕駛汽車。它是人工智慧新方法的基礎,旨在編程計算機使用示例數據或過去經驗來解決特定問題。在這本MIT Press Essential Knowledge系列的書中,Ethem Alpaydin提供了對新人工智慧的簡明且易於理解的概述。這個擴展版提供了有關機器學習面臨的挑戰的新材料,例如隱私、安全性、問責制和偏見。

Alpaydin是一本受歡迎的機器學習教科書的作者,他解釋說,隨著大數據的增長,機器學習的理論——將數據處理為知識的基礎——也在不斷進步。他描述了該領域的演變,解釋了重要的學習算法,並展示了示例應用。他討論了機器學習算法在模式識別中的應用;受人腦啟發的人工神經網絡;學習實例之間關聯的算法;以及強化學習,當自主代理學會採取行動以最大化獎勵時。在新的一章中,他考慮了透明性、可解釋性和公平性,以及基於數據做出決策的倫理和法律影響。

作者簡介

Ethem Alpaydín is Professor in the Department of Computer Engineering at Özyegin University and a member of the Science Academy, Istanbul. He is the author of the widely used textbook, Introduction to Machine Learning (MIT Press), now in its fourth edition.

作者簡介(中文翻譯)

Ethem Alpaydın 是 Özyegin 大學計算機工程系的教授,也是伊斯坦堡科學院的成員。他是廣泛使用的教科書《機器學習導論》(MIT Press)的作者,目前已進入第四版。