Machine Learning and Its Applications
暫譯: 機器學習及其應用

Wlodarczak, Peter

  • 出版商: CRC
  • 出版日期: 2021-06-30
  • 售價: $2,380
  • 貴賓價: 9.5$2,261
  • 語言: 英文
  • 頁數: 204
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1032086777
  • ISBN-13: 9781032086774
  • 相關分類: Machine Learning
  • 海外代購書籍(需單獨結帳)

商品描述

In recent years, machine learning has gained a lot of interest. Due to the advances in processor technology and the availability of large amounts of data, machine learning techniques have provided astounding results in areas such as object recognition or natural language processing. New approaches, e.g. deep learning, have provided groundbreaking outcomes in fields such as multimedia mining or voice recognition. Machine learning is now used in virtually every domain and deep learning algorithms are present in many devices such as smartphones, cars, drones, healthcare equipment, or smart home devices. The Internet, cloud computing and the Internet of Things produce a tsunami of data and machine learning provides the methods to effectively analyze the data and discover actionable knowledge.



This book describes the most common machine learning techniques such as Bayesian models, support vector machines, decision tree induction, regression analysis, and recurrent and convolutional neural networks. It first gives an introduction into the principles of machine learning. It then covers the basic methods including the mathematical foundations. The biggest part of the book provides common machine learning algorithms and their applications. Finally, the book gives an outlook into some of the future developments and possible new research areas of machine learning and artificial intelligence in general.



This book is meant to be an introduction into machine learning. It does not require prior knowledge in this area. It covers some of the basic mathematical principle but intends to be understandable even without a background in mathematics. It can be read chapter wise and intends to be comprehensible, even when not starting in the beginning. Finally, it also intends to be a reference book.



Key Features:



  • Describes real world problems that can be solved using Machine Learning


  • Provides methods for directly applying Machine Learning techniques to concrete real world problems


  • Demonstrates how to apply Machine Learning techniques using different frameworks such as TensorFlow, MALLET, R
  • 商品描述(中文翻譯)

    近年來,機器學習引起了廣泛的關注。由於處理器技術的進步和大量數據的可用性,機器學習技術在物體識別和自然語言處理等領域提供了驚人的結果。新的方法,例如深度學習,在多媒體挖掘或語音識別等領域取得了突破性的成果。機器學習現在幾乎應用於每個領域,深度學習算法也出現在許多設備中,如智能手機、汽車、無人機、醫療設備或智能家居設備。互聯網、雲計算和物聯網產生了海量數據,而機器學習提供了有效分析數據和發現可行知識的方法。

    本書描述了最常見的機器學習技術,如貝葉斯模型、支持向量機、決策樹生成、回歸分析,以及遞歸和卷積神經網絡。首先介紹機器學習的原則,然後涵蓋基本方法,包括數學基礎。本書的最大部分提供了常見的機器學習算法及其應用。最後,本書展望了機器學習和人工智慧的一些未來發展及可能的新研究領域。

    本書旨在作為機器學習的入門書籍,無需具備該領域的先前知識。它涵蓋了一些基本的數學原則,但即使沒有數學背景也能理解。可以按章節閱讀,即使不從頭開始也能夠理解。最後,它也旨在成為一本參考書。

    主要特點:
    - 描述可以使用機器學習解決的現實世界問題
    - 提供將機器學習技術直接應用於具體現實世界問題的方法
    - 演示如何使用不同的框架(如 TensorFlow、MALLET、R)應用機器學習技術

    作者簡介

    Biography:



    Peter Wlodarczak is an IT consultant in Data Analytics and Machine Learning. Born in Basel, Switzerland, he holds a Master degree and a PhD from the University of Southern Queensland, Australia. He has many years of experience in large software engineering and data analysis projects. He has published more than 20 papers and book chapters in this area and has presented his work on many conferences. His research interests include among other Machine Learning, eHealth and Bio computing.



    作者簡介(中文翻譯)

    傳記:



    彼得·沃達查克 是一位專注於數據分析和機器學習的IT顧問。彼得出生於瑞士巴塞爾,擁有澳大利亞南昆士蘭大學的碩士學位和博士學位。他在大型軟體工程和數據分析項目方面擁有多年經驗。他在這個領域發表了超過20篇論文和書籍章節,並在多個會議上展示了他的研究成果。他的研究興趣包括機器學習、電子健康(eHealth)和生物計算(Bio computing)等領域。