Practical Applications of Sparse Modeling (Neural Information Processing series)
暫譯: 稀疏建模的實用應用(神經資訊處理系列)
- 出版商: MIT
- 出版日期: 2014-09-12
- 售價: $1,060
- 貴賓價: 9.5 折 $1,007
- 語言: 英文
- 頁數: 264
- 裝訂: Hardcover
- ISBN: 0262027720
- ISBN-13: 9780262027724
海外代購書籍(需單獨結帳)
商品描述
Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional datasets. This collection describes key approaches in sparse modeling, focusing on its applications in fields including neuroscience, computational biology, and computer vision.
Sparse modeling methods can improve the interpretability of predictive models and aid efficient recovery of high-dimensional unobserved signals from a limited number of measurements. Yet despite significant advances in the field, a number of open issues remain when sparse modeling meets real-life applications. The book discusses a range of practical applications and state-of-the-art approaches for tackling the challenges presented by these applications. Topics considered include the choice of method in genomics applications; analysis of protein mass-spectrometry data; the stability of sparse models in brain imaging applications; sequential testing approaches; algorithmic aspects of sparse recovery; and learning sparse latent models.
ContributorsA. Vania Apkarian, Marwan Baliki, Melissa K. Carroll, Guillermo A. Cecchi, Volkan Cevher, Xi Chen, Nathan W. Churchill, Rémi Emonet, Rahul Garg, Zoubin Ghahramani, Lars Kai Hansen, Matthias Hein, Katherine Heller, Sina Jafarpour, Seyoung Kim, Mladen Kolar, Anastasios Kyrillidis, Seunghak Lee, Aurelie Lozano, Matthew L. Malloy, Pablo Meyer, Shakir Mohamed, Alexandru Niculescu-Mizil, Robert D. Nowak, Jean-Marc Odobez, Peter M. Rasmussen, Irina Rish, Saharon Rosset, Martin Slawski, Stephen C. Strother, Jagannadan Varadarajan, Eric P. Xing
商品描述(中文翻譯)
稀疏建模是一個快速發展的領域,位於統計學習與信號處理的交叉點,受到古老的統計問題驅動,即在高維數據集中選擇少量預測變數。本書彙集了稀疏建模的關鍵方法,重點介紹其在神經科學、計算生物學和計算機視覺等領域的應用。
稀疏建模方法可以提高預測模型的可解釋性,並幫助從有限的測量中有效恢復高維未觀察信號。然而,儘管該領域已取得顯著進展,當稀疏建模應用於現實生活時,仍然存在許多未解決的問題。本書討論了一系列實際應用和最先進的方法,以應對這些應用所帶來的挑戰。考慮的主題包括基因組學應用中的方法選擇;蛋白質質譜數據的分析;腦成像應用中稀疏模型的穩定性;序列測試方法;稀疏恢復的算法方面;以及學習稀疏潛在模型。
貢獻者:A. Vania Apkarian, Marwan Baliki, Melissa K. Carroll, Guillermo A. Cecchi, Volkan Cevher, Xi Chen, Nathan W. Churchill, Rémi Emonet, Rahul Garg, Zoubin Ghahramani, Lars Kai Hansen, Matthias Hein, Katherine Heller, Sina Jafarpour, Seyoung Kim, Mladen Kolar, Anastasios Kyrillidis, Seunghak Lee, Aurelie Lozano, Matthew L. Malloy, Pablo Meyer, Shakir Mohamed, Alexandru Niculescu-Mizil, Robert D. Nowak, Jean-Marc Odobez, Peter M. Rasmussen, Irina Rish, Saharon Rosset, Martin Slawski, Stephen C. Strother, Jagannadan Varadarajan, Eric P. Xing