Log-Linear Models, Extensions, and Applications (Neural Information Processing series)
暫譯: 對數線性模型、擴展與應用(神經資訊處理系列)
- 出版商: MIT
- 出版日期: 2018-11-27
- 售價: $3,800
- 貴賓價: 9.5 折 $3,610
- 語言: 英文
- 頁數: 214
- 裝訂: Hardcover
- ISBN: 0262039508
- ISBN-13: 9780262039505
海外代購書籍(需單獨結帳)
商品描述
Advances in training models with log-linear structures, with topics including variable selection, the geometry of neural nets, and applications.
Log-linear models play a key role in modern big data and machine learning applications. From simple binary classification models through partition functions, conditional random fields, and neural nets, log-linear structure is closely related to performance in certain applications and influences fitting techniques used to train models. This volume covers recent advances in training models with log-linear structures, covering the underlying geometry, optimization techniques, and multiple applications. The first chapter shows readers the inner workings of machine learning, providing insights into the geometry of log-linear and neural net models. The other chapters range from introductory material to optimization techniques to involved use cases. The book, which grew out of a NIPS workshop, is suitable for graduate students doing research in machine learning, in particular deep learning, variable selection, and applications to speech recognition. The contributors come from academia and industry, allowing readers to view the field from both perspectives.
Contributors
Aleksandr Aravkin, Avishy Carmi, Guillermo A. Cecchi, Anna Choromanska, Li Deng, Xinwei Deng, Jean Honorio, Tony Jebara, Huijing Jiang, Dimitri Kanevsky, Brian Kingsbury, Fabrice Lambert, Aurélie C. Lozano, Daniel Moskovich, Yuriy S. Polyakov, Bhuvana Ramabhadran, Irina Rish, Dimitris Samaras, Tara N. Sainath, Hagen Soltau, Serge F. Timashev, Ewout van den Berg
商品描述(中文翻譯)
《具有對數線性結構的模型訓練進展,主題包括變數選擇、神經網絡的幾何以及應用。》
對數線性模型在現代大數據和機器學習應用中扮演著關鍵角色。從簡單的二元分類模型到分區函數、條件隨機場和神經網絡,對數線性結構與某些應用中的性能密切相關,並影響用於訓練模型的擬合技術。本書涵蓋了具有對數線性結構的模型訓練的最新進展,探討了其基礎幾何、優化技術和多種應用。第一章向讀者展示了機器學習的內部運作,提供了對對數線性和神經網絡模型幾何的見解。其他章節從入門材料到優化技術,再到複雜的使用案例。本書源於NIPS研討會,適合從事機器學習研究的研究生,特別是在深度學習、變數選擇和語音識別應用方面。貢獻者來自學術界和業界,使讀者能夠從兩個角度來看待這一領域。
貢獻者
Aleksandr Aravkin, Avishy Carmi, Guillermo A. Cecchi, Anna Choromanska, Li Deng, Xinwei Deng, Jean Honorio, Tony Jebara, Huijing Jiang, Dimitri Kanevsky, Brian Kingsbury, Fabrice Lambert, Aurélie C. Lozano, Daniel Moskovich, Yuriy S. Polyakov, Bhuvana Ramabhadran, Irina Rish, Dimitris Samaras, Tara N. Sainath, Hagen Soltau, Serge F. Timashev, Ewout van den Berg