Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference (Paperback)
暫譯: 駭客的貝葉斯方法:機率程式設計與貝葉斯推斷 (平裝本)

Cameron Davidson-Pilon

買這商品的人也買了...

商品描述

Master Bayesian Inference through Practical Examples and Computation–Without Advanced Mathematical Analysis

 

Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power.

 

Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention.

 

Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You’ll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you’ve mastered these techniques, you’ll constantly turn to this guide for the working PyMC code you need to jumpstart future projects.

 

Coverage includes

 

• Learning the Bayesian “state of mind” and its practical implications

• Understanding how computers perform Bayesian inference

• Using the PyMC Python library to program Bayesian analyses

• Building and debugging models with PyMC

• Testing your model’s “goodness of fit”

• Opening the “black box” of the Markov Chain Monte Carlo algorithm to see how and why it works

• Leveraging the power of the “Law of Large Numbers”

• Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning

• Using loss functions to measure an estimate’s weaknesses based on your goals and desired outcomes

• Selecting appropriate priors and understanding how their influence changes with dataset size

• Overcoming the “exploration versus exploitation” dilemma: deciding when “pretty good” is good enough

• Using Bayesian inference to improve A/B testing

• Solving data science problems when only small amounts of data are available

 

Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.

商品描述(中文翻譯)

《透過實務範例與計算掌握貝葉斯推論——無需高級數學分析》

貝葉斯推論方法自然且強大。然而,大多數關於貝葉斯推論的討論依賴於極其複雜的數學分析和人造範例,使得沒有強大數學背景的人無法接觸。現在,Cameron Davidson-Pilon 從計算的角度介紹貝葉斯推論,將理論與實務相結合,讓你能夠利用計算能力獲得結果。

《貝葉斯方法與駭客》透過強大的 PyMC 語言和密切相關的 Python 工具 NumPy、SciPy 和 Matplotlib,通過機率編程來闡明貝葉斯推論。使用這種方法,你可以在小步驟中達成有效的解決方案,而無需大量的數學介入。

Davidson-Pilon 首先介紹貝葉斯推論的基本概念,並將其與其他技術進行比較,指導你建立和訓練你的第一個貝葉斯模型。接著,他通過一系列詳細的範例和經過廣泛用戶反饋精煉的直觀解釋來介紹 PyMC。你將學會如何使用馬可夫鏈蒙地卡羅(Markov Chain Monte Carlo)算法,選擇適當的樣本大小和先驗,處理損失函數,並在從金融到行銷等領域應用貝葉斯推論。一旦你掌握了這些技術,你將不斷參考這本指南,以獲取啟動未來專案所需的 PyMC 代碼。

涵蓋內容包括:

• 學習貝葉斯的「心態」及其實際意涵
• 理解計算機如何執行貝葉斯推論
• 使用 PyMC Python 庫編寫貝葉斯分析
• 使用 PyMC 建立和除錯模型
• 測試模型的「擬合優度」
• 打開馬可夫鏈蒙地卡羅算法的「黑箱」,了解其運作原理
• 利用「大數法則」的力量
• 掌握關鍵概念,如聚類、收斂、自相關和稀疏化
• 使用損失函數根據你的目標和期望結果來衡量估計的弱點
• 選擇適當的先驗,並理解其影響如何隨數據集大小而變化
• 克服「探索與利用」的困境:決定何時「相當不錯」已經足夠
• 使用貝葉斯推論來改善 A/B 測試
• 在僅有少量數據可用時解決數據科學問題

Cameron Davidson-Pilon 在應用數學的許多領域工作,從基因和疾病的演化動力學到金融價格的隨機建模。他對開源社群的貢獻包括 lifelines,這是一個用 Python 實現的生存分析工具。他在滑鐵盧大學和莫斯科獨立大學接受教育,目前在在線商務領導者 Shopify 工作。

最後瀏覽商品 (20)