LLM Transformers: A Comprehensive Guide to Building, Training, and Deploying Language Models

Vemula, Anand

  • 出版商: Independently Published
  • 出版日期: 2024-08-09
  • 售價: $660
  • 貴賓價: 9.5$627
  • 語言: 英文
  • 頁數: 108
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798335434836
  • ISBN-13: 9798335434836
  • 相關分類: LangChain
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

LLM Transformers: A Comprehensive Guide to Building, Training, and Deploying Language Models" is an essential resource for professionals and enthusiasts aiming to master the intricacies of modern language models. This book offers a detailed exploration of LLM Transformers, a pivotal advancement in natural language processing (NLP).

Beginning with foundational concepts, the book provides a thorough overview of language model evolution, highlighting the transition from traditional models like RNNs and LSTMs to the more sophisticated Transformer architecture. It delves into the core components of Transformers, including self-attention mechanisms and positional encoding, explaining how these innovations revolutionize NLP tasks.

In the training section, readers will gain hands-on experience with setting up and optimizing training environments. The guide covers everything from data preparation and preprocessing techniques to advanced training strategies. Key topics include fine-tuning pre-trained models versus training from scratch, and strategies for distributed training to handle large-scale datasets efficiently.

The book further explores practical applications, offering insights into natural language understanding tasks such as sentiment analysis and entity recognition, as well as generative capabilities like text generation and summarization. Real-world use cases demonstrate how LLM Transformers are deployed in industries such as healthcare, finance, and customer service.

In the advanced topics section, the book addresses domain-specific fine-tuning, multimodal Transformers that combine text with other data types, and future directions for research. Each chapter includes hands-on exercises and case studies, allowing readers to apply their knowledge to real-world scenarios and gain practical experience.

By the end of this book, readers will have a comprehensive understanding of how to build, train, and deploy LLM Transformers, equipped with the skills needed to implement these models in various applications and tackle future challenges in the field.

商品描述(中文翻譯)

《LLM Transformers: A Comprehensive Guide to Building, Training, and Deploying Language Models》是一本對於專業人士和愛好者而言,掌握現代語言模型複雜性的必備資源。本書詳細探討了LLM Transformers,這是自然語言處理(NLP)領域的一項重要進展。

本書從基礎概念開始,全面回顧語言模型的演變,強調從傳統模型如RNN和LSTM過渡到更為複雜的Transformer架構。它深入探討了Transformers的核心組件,包括自注意力機制和位置編碼,解釋了這些創新如何徹底改變NLP任務。

在訓練部分,讀者將獲得設置和優化訓練環境的實踐經驗。本指南涵蓋了從數據準備和預處理技術到高級訓練策略的所有內容。關鍵主題包括微調預訓練模型與從零開始訓練的比較,以及分散式訓練的策略,以有效處理大規模數據集。

本書進一步探討了實際應用,提供了對自然語言理解任務的見解,如情感分析和實體識別,以及文本生成和摘要等生成能力。真實案例展示了LLM Transformers在醫療、金融和客戶服務等行業中的應用。

在高級主題部分,本書討論了特定領域的微調、多模態Transformers(將文本與其他數據類型結合)以及未來研究的方向。每章都包含實踐練習和案例研究,讓讀者能夠將所學知識應用於現實場景,獲得實踐經驗。

閱讀完本書後,讀者將全面了解如何構建、訓練和部署LLM Transformers,並具備在各種應用中實施這些模型的技能,以應對未來在該領域的挑戰。