Decoding Large Language Models: An exhaustive guide to understanding, implementing, and optimizing LLMs for NLP applications
Cronin, Irena
- 出版商: Packt Publishing
- 出版日期: 2024-10-31
- 售價: $1,990
- 貴賓價: 9.5 折 $1,891
- 語言: 英文
- 頁數: 396
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1835084656
- ISBN-13: 9781835084656
-
相關分類:
LangChain、Text-mining
海外代購書籍(需單獨結帳)
相關主題
商品描述
Explore the architecture, development, and deployment strategies of large language models to unlock their full potential
Key Features:
- Gain in-depth insight into LLMs, from architecture through to deployment
- Learn through practical insights into real-world case studies and optimization techniques
- Get a detailed overview of the AI landscape to tackle a wide variety of AI and NLP challenges
- Purchase of the print or Kindle book includes a free PDF eBook
Book Description:
Ever wondered how large language models (LLMs) work and how they're shaping the future of artificial intelligence? Written by a renowned author and AI, AR, and data expert, Decoding Large Language Models is a combination of deep technical insights and practical use cases that not only demystifies complex AI concepts, but also guides you through the implementation and optimization of LLMs for real-world applications.
You'll learn about the structure of LLMs, how they're developed, and how to utilize them in various ways. The chapters will help you explore strategies for improving these models and testing them to ensure effective deployment. Packed with real-life examples, this book covers ethical considerations, offering a balanced perspective on their societal impact. You'll be able to leverage and fine-tune LLMs for optimal performance with the help of detailed explanations. You'll also master techniques for training, deploying, and scaling models to be able to overcome complex data challenges with confidence and precision. This book will prepare you for future challenges in the ever-evolving fields of AI and NLP.
By the end of this book, you'll have gained a solid understanding of the architecture, development, applications, and ethical use of LLMs and be up to date with emerging trends, such as GPT-5.
What You Will Learn:
- Explore the architecture and components of contemporary LLMs
- Examine how LLMs reach decisions and navigate their decision-making process
- Implement and oversee LLMs effectively within your organization
- Master dataset preparation and the training process for LLMs
- Hone your skills in fine-tuning LLMs for targeted NLP tasks
- Formulate strategies for the thorough testing and evaluation of LLMs
- Discover the challenges associated with deploying LLMs in production environments
- Develop effective strategies for integrating LLMs into existing systems
Who this book is for:
If you're a technical leader working in NLP, an AI researcher, or a software developer interested in building AI-powered applications, this book is for you. To get the most out of this book, you should have a foundational understanding of machine learning principles; proficiency in a programming language such as Python; knowledge of algebra and statistics; and familiarity with natural language processing basics.
Table of Contents
- LLM Architecture
- How LLMs Make Decisions
- The Mechanics of Training LLMs
- Advanced Training Strategies
- Fine-Tuning LLMs for Specific Applications
- Testing and Evaluating LLMs
- Deploying LLMs in Production
- Strategies for Integrating LLMs
- Optimization Techniques for Performance
- Advanced Optimization and Efficiency
- LLM Vulnerabilities, Biases, and Legal Implications
- Case Studies - Business Applications and ROI
- The Ecosystem of LLM Tools and Frameworks
- Preparing for GPT-5 and Beyond
- Conclusion and Looking Forward
商品描述(中文翻譯)
探索大型語言模型的架構、開發和部署策略,以釋放其全部潛力
主要特點:
- 深入了解大型語言模型(LLMs),從架構到部署
- 通過實際案例研究和優化技術獲得實用見解
- 獲得AI領域的詳細概述,以應對各種AI和自然語言處理(NLP)挑戰
- 購買印刷版或Kindle書籍可獲得免費PDF電子書
書籍描述:
你是否曾經想過大型語言模型(LLMs)是如何運作的,以及它們如何塑造人工智慧的未來?《解碼大型語言模型》由知名作家及AI、AR和數據專家撰寫,結合了深度技術見解和實用案例,不僅揭開了複雜AI概念的神秘面紗,還指導你如何在實際應用中實施和優化LLMs。
你將學習LLMs的結構、開發過程以及如何以多種方式利用它們。各章節將幫助你探索改善這些模型的策略,並測試它們以確保有效部署。本書充滿了現實生活中的例子,涵蓋了倫理考量,提供了對其社會影響的平衡視角。你將能夠利用詳細的解釋來調整和優化LLMs以達到最佳性能。你還將掌握訓練、部署和擴展模型的技術,以自信和精確地克服複雜的數據挑戰。本書將為你未來在不斷演變的AI和NLP領域中面對挑戰做好準備。
在本書結束時,你將對LLMs的架構、開發、應用和倫理使用有堅實的理解,並了解新興趨勢,如GPT-5。
你將學到的內容:
- 探索當代LLMs的架構和組件
- 檢視LLMs如何做出決策及其決策過程
- 在你的組織內有效實施和監督LLMs
- 精通LLMs的數據集準備和訓練過程
- 磨練針對特定NLP任務的LLMs微調技能
- 制定徹底測試和評估LLMs的策略
- 發現在生產環境中部署LLMs所面臨的挑戰
- 制定有效的策略將LLMs整合到現有系統中
本書適合對象:
如果你是從事NLP的技術領導者、AI研究人員或有興趣開發AI驅動應用的軟體開發人員,本書適合你。為了充分利用本書,你應具備機器學習原則的基礎理解;熟練掌握Python等程式語言;具備代數和統計知識;並熟悉自然語言處理的基本概念。
目錄:
- LLM架構
- LLM如何做出決策
- 訓練LLMs的機制
- 進階訓練策略
- 針對特定應用的LLMs微調
- 測試和評估LLMs
- 在生產中部署LLMs
- 整合LLMs的策略
- 性能優化技術
- 進階優化和效率
- LLM的脆弱性、偏見和法律影響
- 案例研究 - 商業應用和投資回報
- LLM工具和框架的生態系統
- 為GPT-5及以後的版本做準備
- 結論與展望