Grokking LLM: From Fundamentals to Advanced Techniques in Large Language Models
Vemula, Anand
- 出版商: Independently Published
- 出版日期: 2024-07-05
- 售價: $1,100
- 貴賓價: 9.5 折 $1,045
- 語言: 英文
- 頁數: 64
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9798332331886
- ISBN-13: 9798332331886
-
相關分類:
LangChain
海外代購書籍(需單獨結帳)
相關主題
商品描述
Grokking LLM: From Fundamentals to Advanced Techniques in Large Language Models is a comprehensive guide that delves into the intricacies of Large Language Models (LLMs) and their transformative impact on natural language processing (NLP). This book is designed to take readers on a journey from the basic concepts of NLP to the advanced techniques used to train and deploy LLMs effectively.
The book begins with an introduction to LLMs, explaining their evolution, significance, and diverse applications in fields such as text generation, translation, and conversational AI. It provides a foundational understanding of the key components of LLMs, including tokens, embeddings, and the attention mechanism, alongside an overview of the Transformer architecture that underpins these models.
Readers will explore popular LLMs like GPT-3, GPT-4, BERT, and T5, learning about their unique characteristics, strengths, and use cases. A comparative analysis helps highlight the differences and performance metrics of these models, aiding in selecting the right model for specific applications.
Training large language models is covered in detail, from data collection and preprocessing to training objectives and fine-tuning techniques. The book also addresses the challenges of handling bias and ensuring fairness in LLMs, offering practical strategies for mitigation.
Implementing LLMs with Python and TensorFlow is a key focus, providing step-by-step guidance on setting up the environment, preparing data, and building and fine-tuning models. Readers will gain hands-on experience through practical projects such as building a text generator, creating a chatbot, and developing sentiment analysis and text summarization systems.
Advanced techniques like transfer learning, prompt engineering, zero-shot and few-shot learning, and distributed training are explored to equip readers with the skills needed for cutting-edge LLM applications. The book also covers performance optimization, model compression, quantization, and best practices for deploying LLMs in production environments.
With real-world case studies and insights into future trends and innovations, Grokking LLM: From Fundamentals to Advanced Techniques in Large Language Models is an essential resource for anyone looking to master the power and potential of LLMs in the rapidly evolving field of AI.
商品描述(中文翻譯)
《Grokking LLM: 從基礎到大型語言模型的進階技術》是一本全面的指南,深入探討大型語言模型(LLMs)的複雜性及其對自然語言處理(NLP)的變革性影響。本書旨在帶領讀者從NLP的基本概念出發,逐步了解有效訓練和部署LLMs所需的進階技術。
本書首先介紹LLMs,解釋其演變、重要性及在文本生成、翻譯和對話式AI等領域的多樣應用。它提供了LLMs關鍵組件的基礎理解,包括tokens、embeddings和注意力機制,並概述了支撐這些模型的Transformer架構。
讀者將探索流行的LLMs,如GPT-3、GPT-4、BERT和T5,了解它們的獨特特徵、優勢和使用案例。比較分析有助於突顯這些模型之間的差異和性能指標,幫助選擇適合特定應用的模型。
本書詳細介紹了訓練大型語言模型的過程,從數據收集和預處理到訓練目標和微調技術。書中還探討了處理偏見和確保LLMs公平性的挑戰,提供了實用的緩解策略。
使用Python和TensorFlow實現LLMs是本書的重點,提供逐步指導,幫助讀者設置環境、準備數據以及構建和微調模型。讀者將通過實際項目獲得動手經驗,例如構建文本生成器、創建聊天機器人以及開發情感分析和文本摘要系統。
本書還探討了轉移學習、提示工程、零樣本和少樣本學習以及分佈式訓練等進階技術,以裝備讀者掌握尖端LLM應用所需的技能。此外,書中涵蓋了性能優化、模型壓縮、量化及在生產環境中部署LLMs的最佳實踐。
透過真實案例研究和對未來趨勢及創新的見解,《Grokking LLM: 從基礎到大型語言模型的進階技術》是任何希望掌握LLMs在快速發展的AI領域中力量和潛力的人的必備資源。