LLM Model Security: Strategies, Best Practices, and Future Trends

Vemula, Anand

  • 出版商: Independently Published
  • 出版日期: 2024-07-11
  • 售價: $1,110
  • 貴賓價: 9.5$1,055
  • 語言: 英文
  • 頁數: 50
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798332828102
  • ISBN-13: 9798332828102
  • 相關分類: LangChain資訊安全
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

LLM Model Security: Strategies, Best Practices, and Future Trends is a comprehensive guide dedicated to the security of Large Language Models (LLMs). This book serves as an essential resource for AI professionals, data scientists, and security practitioners who work with advanced AI models and seek to understand the intricacies of securing them.

Part I: Introduction to LLM Model Security sets the stage by providing an overview of LLMs, their applications, and the critical importance of security. It outlines common threats and vulnerabilities, emphasizing why security is paramount in modern AI deployments.

Part II: Threat Landscape and Vulnerabilities dives deep into the various types of attacks that can target LLMs, such as data poisoning, model inversion, adversarial attacks, and evasion and extraction techniques. It also discusses vulnerabilities inherent in training data, model architecture, and deployment practices, highlighting the need for robust security measures.

Part III: Security Measures and Best Practices offers practical solutions to these challenges. It covers data security and privacy, including secure data collection and handling, anonymization, and de-identification techniques. The section also addresses secure model training, protecting training pipelines, and ensuring data integrity. Model hardening techniques, such as adversarial training and robustness testing, are explained in detail, along with deployment security practices like access control, authentication, and incident response.

Part IV: Advanced Security Techniques explores cutting-edge methods such as differential privacy, federated learning, and homomorphic encryption. These techniques provide advanced means to enhance security and privacy in LLM deployments.

Part V: Compliance and Ethical Considerations examines the regulatory landscape and ethical implications of LLM security. It discusses relevant regulations, ensuring compliance, fairness, bias mitigation, transparency, and accountability.

Part VI: Case Studies and Hands-On Projects presents real-world examples of security breaches and the lessons learned. It also includes practical projects to build a secure LLM from scratch and implement security measures in existing models.

Part VII: Future Trends and Challenges looks ahead to emerging threats and advancements in security technologies. It discusses future attack vectors, preparation strategies, and the role of AI in enhancing LLM security.

By combining theoretical insights with practical advice, this book aims to equip readers with the knowledge and tools necessary to secure LLMs effectively.

商品描述(中文翻譯)

《LLM模型安全:策略、最佳實踐與未來趨勢》是一本專門針對大型語言模型(LLMs)安全性的綜合指南。本書是AI專業人士、數據科學家和安全從業者的重要資源,特別是那些使用先進AI模型並希望了解其安全性複雜性的人士。

第一部分:LLM模型安全概論,提供了LLMs的概述、應用及其安全性的重要性。它概述了常見的威脅和漏洞,強調了為何安全性在現代AI部署中至關重要。

第二部分:威脅環境與漏洞,深入探討了可能針對LLMs的各種攻擊類型,如數據中毒、模型反演、對抗性攻擊以及逃避和提取技術。它還討論了訓練數據、模型架構和部署實踐中固有的漏洞,突顯了強健安全措施的必要性。

第三部分:安全措施與最佳實踐,提供了針對這些挑戰的實用解決方案。它涵蓋了數據安全和隱私,包括安全的數據收集和處理、匿名化和去識別化技術。該部分還涉及安全模型訓練、保護訓練管道和確保數據完整性。模型加固技術,如對抗性訓練和穩健性測試,將詳細解釋,並介紹如訪問控制、身份驗證和事件響應等部署安全實踐。

第四部分:先進安全技術,探討了如差分隱私、聯邦學習和同態加密等前沿方法。這些技術提供了增強LLM部署安全性和隱私的先進手段。

第五部分:合規性與倫理考量,檢視了LLM安全的監管環境和倫理影響。它討論了相關法規、確保合規性、公平性、偏見緩解、透明度和問責制。

第六部分:案例研究與實作專案,展示了安全漏洞的真實案例及其所學到的教訓。它還包括實用專案,以從零開始建立安全的LLM並在現有模型中實施安全措施。

第七部分:未來趨勢與挑戰,展望了新興威脅和安全技術的進步。它討論了未來的攻擊向量、準備策略以及AI在增強LLM安全性中的角色。

通過結合理論見解與實用建議,本書旨在為讀者提供有效保護LLMs所需的知識和工具。