Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats
Aravilli, Srinivasa Rao
- 出版商: Packt Publishing
- 出版日期: 2024-05-24
- 售價: $1,840
- 貴賓價: 9.5 折 $1,748
- 語言: 英文
- 頁數: 402
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1800564678
- ISBN-13: 9781800564671
-
相關分類:
Machine Learning、資訊安全
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$7,010$6,660 -
$1,880$1,786 -
$7,010$6,660 -
$4,500$4,275 -
$6,640$6,308 -
$4,860$4,617 -
$5,430$5,159 -
$2,600$2,470 -
$6,360$6,042 -
$6,640$6,308 -
$7,010$6,660 -
$1,670$1,587 -
$4,520$4,294 -
$5,690$5,406 -
$4,520$4,294 -
$7,030$6,679 -
$7,750$7,363 -
$4,040$3,838 -
$1,100$1,045 -
$1,100$1,045 -
$900$855 -
$1,010$960 -
$2,340$2,223 -
$2,300$2,185 -
$1,670$1,587
相關主題
商品描述
Gain hands-on experience in data privacy and privacy-preserving machine learning with open-source ML frameworks, while exploring techniques and algorithms to protect sensitive data from privacy breaches
Key Features
- Understand machine learning privacy risks and employ machine learning algorithms to safeguard data against breaches
- Develop and deploy privacy-preserving ML pipelines using open-source frameworks
- Gain insights into confidential computing and its role in countering memory-based data attacks
- Purchase of the print or Kindle book includes a free PDF eBook
Book Description
Privacy regulations are evolving each year and compliance with privacy regulations is mandatory for every enterprise. Machine learning engineers are required to not only analyze large amounts of data to gain crucial insights, but also comply with privacy regulations to protect sensitive data. This may seem quite challenging considering the large volume of data involved and lack of in-depth expertise in privacy-preserving machine learning.
This book delves into data privacy, machine learning privacy threats, and real-world cases of privacy-preserving machine learning, as well as open-source frameworks for implementation. You'll be guided through developing anti-money laundering solutions via federated learning and differential privacy. Dedicated sections also address data in-memory attacks and strategies for safeguarding data and ML models. The book concludes by discussing the necessity of confidential computation, privacy-preserving machine learning benchmarks, and cutting-edge research.
By the end of this machine learning book, you'll be well-versed in privacy-preserving machine learning and know how to effectively protect data from threats and attacks in the real world.
What you will learn
- Study data privacy, threats, and attacks across different machine learning phases
- Explore Uber and Apple cases for applying differential privacy and enhancing data security
- Discover IID and non-IID data sets as well as data categories
- Use open-source tools for federated learning (FL) and explore FL algorithms and benchmarks
- Understand secure multiparty computation with PSI for large data
- Get up to speed with confidential computation and find out how it helps data in memory attacks
Who this book is for
This book is for data scientists, machine learning engineers, and privacy engineers who have working knowledge of mathematics as well as basic knowledge in any one of the ML frameworks (TensorFlow, PyTorch, or scikit-learn).
Table of Contents
- Introduction to Data Privacy, Privacy threats and breaches
- Machine Learning Phases and privacy threats/attacks in each phase
- Overview of Privacy Preserving Data Analysis and Introduction to Differential Privacy
- Differential Privacy Algorithms, Pros and Cons
- Developing Applications with Different Privacy using open source frameworks
- Need for Federated Learning and implementing Federated Learning using open source frameworks
- Federated Learning benchmarks, startups and next opportunity
- Homomorphic Encryption and Secure Multiparty Computation
- Confidential computing - what, why and current state
- Privacy Preserving in Large Language Models
商品描述(中文翻譯)
在開源機器學習框架中獲得關於數據隱私和隱私保護機器學習的實踐經驗,同時探索保護敏感數據免受隱私侵犯的技術和算法。
主要特點:
- 了解機器學習隱私風險,並使用機器學習算法保護數據免受侵犯。
- 使用開源框架開發和部署保護隱私的機器學習流程。
- 深入了解機密計算及其在對抗基於內存的數據攻擊中的作用。
- 購買印刷版或Kindle電子書包括免費的PDF電子書。
書籍描述:
隨著隱私法規每年都在不斷演變,遵守隱私法規對每個企業都是強制性的。機器學習工程師不僅需要分析大量數據以獲得重要見解,還需要遵守隱私法規以保護敏感數據。考慮到涉及的大量數據和對保護隱私的深入專業知識的缺乏,這可能會顯得相當具有挑戰性。
本書深入探討了數據隱私、機器學習隱私威脅以及隱私保護機器學習的實際案例,以及用於實施的開源框架。您將通過聯邦學習和差分隱私來開發反洗錢解決方案。專門的章節還討論了數據內存攻擊和保護數據和機器學習模型的策略。本書最後討論了機密計算的必要性、隱私保護機器學習基準以及尖端研究。
通過閱讀本機器學習書籍,您將熟悉隱私保護機器學習,並了解如何在現實世界中有效保護數據免受威脅和攻擊。
學到的知識:
- 研究不同機器學習階段的數據隱私、威脅和攻擊。
- 探索Uber和Apple案例,應用差分隱私並增強數據安全性。
- 發現IID和非IID數據集以及數據類別。
- 使用聯邦學習(FL)的開源工具,並探索FL算法和基準。
- 了解用於大數據的安全多方計算與PSI。
- 熟悉機密計算,並了解它如何幫助內存中的數據攻擊。
本書適合對數據科學家、機器學習工程師和隱私工程師具有數學基礎知識以及TensorFlow、PyTorch或scikit-learn等任一機器學習框架的基本知識的讀者。
目錄:
1. 數據隱私、隱私威脅和侵犯簡介
2. 機器學習階段及每個階段的隱私威脅/攻擊
3. 隱私保護數據分析概述和差分隱私介紹
4. 差分隱私算法、優缺點
5. 使用開源框架開發具有不同隱私的應用
6. 聯邦學習的需求和使用開源框架實施聯邦學習
7. 聯邦學習基準、初創公司和下一個機會
8. 同態加密和安全多方計算
9. 機密計算 - 定義、原因和現狀
10. 大型語言模型的隱私保護