Hands-On LLM: Building Applications, Implementation, and Techniques

Vemula, Anand

  • 出版商: Independently Published
  • 出版日期: 2024-07-08
  • 售價: $1,100
  • 貴賓價: 9.5$1,045
  • 語言: 英文
  • 頁數: 74
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798332548642
  • ISBN-13: 9798332548642
  • 相關分類: LangChain
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Hands-On LLM: Building Applications, Implementation, and Techniques" is a comprehensive guide that equips readers with practical skills to harness the power of Large Language Models (LLMs). The book focuses on hands-on learning, providing step-by-step instructions and real-world examples to help readers understand and apply LLMs effectively.

Starting with an introduction to LLMs, the book covers their historical background, key concepts, and terminology. It explores various applications such as natural language processing, text generation, conversational AI, and more, highlighting their versatility in solving complex tasks.

The core of the book delves into building and training LLMs. Readers learn how to set up their development environment, select and preprocess data, and customize model architectures like GPT and BERT. Training strategies, hyperparameter tuning, and distributed training techniques are also covered in detail.

Practical projects form a significant part of the book, including text generation, sentiment analysis, named entity recognition (NER), question answering systems, and more. Each project guides readers through implementation, fine-tuning models for specific tasks, and integrating LLMs with other technologies such as knowledge graphs and computer vision.

Advanced topics like model optimization, deployment strategies, and transfer learning for adapting models to new domains are discussed extensively. The book emphasizes practicality by offering insights into deploying LLMs in production environments, scaling applications, and optimizing model performance through techniques like model compression and serving methodologies.

Case studies and industry-specific applications showcase success stories and lessons learned from implementing LLMs across healthcare, finance, retail, and beyond. The book concludes with an exploration of future trends in LLMs, discussing emerging research, technological advancements, and the ethical implications shaping the future of AI.

商品描述(中文翻譯)

《Hands-On LLM: Building Applications, Implementation, and Techniques》是一本全面的指南,幫助讀者掌握實用技能,以利用大型語言模型(LLMs)的力量。這本書專注於實作學習,提供逐步的指導和真實世界的範例,幫助讀者有效理解和應用LLMs。

本書從LLMs的介紹開始,涵蓋其歷史背景、關鍵概念和術語。它探討了各種應用,如自然語言處理、文本生成、對話式AI等,突顯了它們在解決複雜任務中的多樣性。

本書的核心深入探討了LLMs的構建和訓練。讀者將學習如何設置開發環境、選擇和預處理數據,以及自定義模型架構,如GPT和BERT。訓練策略、超參數調整和分佈式訓練技術也將詳細介紹。

實用項目是本書的重要部分,包括文本生成、情感分析、命名實體識別(NER)、問答系統等。每個項目都指導讀者實施,為特定任務微調模型,並將LLMs與其他技術(如知識圖譜和計算機視覺)整合。

本書廣泛討論了模型優化、部署策略和轉移學習等進階主題,以適應新領域的模型。書中強調實用性,提供在生產環境中部署LLMs的見解,擴展應用程序,並通過模型壓縮和服務方法等技術優化模型性能。

案例研究和行業特定應用展示了在醫療、金融、零售等領域實施LLMs的成功故事和經驗教訓。本書最後探討了LLMs的未來趨勢,討論新興研究、技術進步以及塑造AI未來的倫理影響。