DATA MINING WITH DECISION TREES: THEORY AND APPLICATIONS (2ND EDITION)
暫譯: 決策樹資料探勘:理論與應用(第二版)
Lior Rokach
- 出版商: World Scientific Pub
- 出版日期: 2014-10-23
- 售價: $4,770
- 貴賓價: 9.5 折 $4,532
- 語言: 英文
- 頁數: 328
- 裝訂: Paperback
- ISBN: 981459007X
- ISBN-13: 9789814590075
-
相關分類:
Data-mining
海外代購書籍(需單獨結帳)
相關主題
商品描述
This 2nd Edition is dedicated entirely to the field of decision trees in data mining; to cover all aspects of this important technique, as well as improved or new methods and techniques developed after the publication of our first edition. In this new edition, all chapters have been revised and new topics brought in. New topics include Cost-Sensitive Active Learning, Learning with Uncertain and Imbalanced Data, Using Decision Trees beyond Classification Tasks, Privacy Preserving Decision Tree Learning, Lessons Learned from Comparative Studies, and Learning Decision Trees for Big Data. A walk-through guide to existing open-source data mining software is also included in this edition.
This book invites readers to explore the many benefits in data mining that decision trees offer:
- Self-explanatory and easy to follow when compacted
- Able to handle a variety of input data: nominal, numeric and textual
- Scales well to big data
- Able to process datasets that may have errors or missing values
- High predictive performance for a relatively small computational effort
- Available in many open source data mining packages over a variety of platforms
- Useful for various tasks, such as classification, regression, clustering and feature selection
Readership: Researchers, graduate and undergraduate students in information systems, engineering, computer science, statistics and management.
商品描述(中文翻譯)
決策樹已成為知識發現和資料探勘中最強大且最受歡迎的方法之一;它是探索大型且複雜資料集以發現有用模式的科學。決策樹學習隨著時間不斷演進。現有的方法不斷改進,並且不斷有新方法被引入。
本書第二版專門針對資料探勘中的決策樹領域,涵蓋這一重要技術的各個方面,以及在我們第一版出版後所開發的改進或新方法和技術。在這一新版本中,所有章節均已修訂,並引入了新主題。新主題包括成本敏感的主動學習、處理不確定和不平衡資料的學習、超越分類任務的決策樹應用、隱私保護的決策樹學習、比較研究的經驗教訓,以及針對大數據的決策樹學習。本版還包含了現有開源資料探勘軟體的逐步指南。
本書邀請讀者探索決策樹在資料探勘中所提供的眾多好處:
- 自我解釋且易於理解
- 能夠處理各種輸入資料:名義型、數值型和文本型
- 良好擴展至大數據
- 能夠處理可能存在錯誤或缺失值的資料集
- 在相對較小的計算努力下具有高預測性能
- 在多種平台上的許多開源資料探勘套件中可用
- 對於各種任務(如分類、回歸、聚類和特徵選擇)都很有用
讀者對象:資訊系統、工程、計算機科學、統計學和管理學的研究人員、研究生和本科生。