GRAPH CLASSIFICATION AND CLUSTERING BASED ON VECTOR SPACE EMBEDDING
暫譯: 基於向量空間嵌入的圖形分類與聚類

Kaspar Riesen, Horst Bunke

  • 出版商: World Scientific Pub
  • 出版日期: 2010-07-30
  • 售價: $5,030
  • 貴賓價: 9.5$4,779
  • 語言: 英文
  • 頁數: 331
  • 裝訂: Hardcover
  • ISBN: 9814304719
  • ISBN-13: 9789814304719
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book is concerned with a fundamentally novel approach to graph-based pattern recognition based on vector space embedding of graphs. It aims at condensing the high representational power of graphs into a computationally efficient and mathematically convenient feature vector.

This volume utilizes the dissimilarity space representation originally proposed by Duin and Pekalska to embed graphs in real vector spaces. Such an embedding gives one access to all algorithms developed in the past for feature vectors, which has been the predominant representation formalism in pattern recognition and related areas for a long time.

商品描述(中文翻譯)

本書探討了一種基於圖形的模式識別的根本新方法,該方法基於圖形的向量空間嵌入。其目的是將圖形的高表徵能力濃縮為計算上高效且數學上方便的特徵向量。

本卷利用了Duin和Pekalska最初提出的異質性空間表示法,將圖形嵌入到實數向量空間中。這種嵌入使得可以訪問過去為特徵向量開發的所有算法,而特徵向量長期以來一直是模式識別及相關領域的主要表示形式。