Network Embedding: Theories, Methods, and Applications
暫譯: 網路嵌入:理論、方法與應用
Yang, Cheng, Liu, Zhiyuan, Tu, Cunchao
- 出版商: Morgan & Claypool
- 出版日期: 2021-03-25
- 售價: $2,890
- 貴賓價: 9.5 折 $2,746
- 語言: 英文
- 頁數: 242
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1636390447
- ISBN-13: 9781636390444
-
相關翻譯:
網絡嵌入:理論、方法和應用 (簡中版)
商品描述
Many machine learning algorithms require real-valued feature vectors of data instances as inputs. By projecting data into vector spaces, representation learning techniques have achieved promising performance in many areas such as computer vision and natural language processing. There is also a need to learn representations for discrete relational data, namely networks or graphs. Network Embedding (NE) aims at learning vector representations for each node or vertex in a network to encode the topologic structure. Due to its convincing performance and efficiency, NE has been widely applied in many network applications such as node classification and link prediction.
This book provides a comprehensive introduction to the basic concepts, models, and applications of network representation learning (NRL). The book starts with an introduction to the background and rising of network embeddings as a general overview for readers. Then it introduces the development of NE techniques by presenting several representative methods on general graphs, as well as a unified NE framework based on matrix factorization. Afterward, it presents the variants of NE with additional information: NE for graphs with node attributes/contents/labels; and the variants with different characteristics: NE for community-structured/large-scale/heterogeneous graphs. Further, the book introduces different applications of NE such as recommendation and information diffusion prediction. Finally, the book concludes the methods and applications and looks forward to the future directions.
商品描述(中文翻譯)
許多機器學習演算法需要實值特徵向量作為數據實例的輸入。透過將數據投影到向量空間,表示學習技術在許多領域如計算機視覺和自然語言處理中取得了令人鼓舞的表現。對於離散關聯數據,即網絡或圖形,學習表示也是必要的。網絡嵌入(Network Embedding, NE)旨在為網絡中的每個節點或頂點學習向量表示,以編碼拓撲結構。由於其令人信服的性能和效率,NE已被廣泛應用於許多網絡應用中,如節點分類和連結預測。
本書提供了網絡表示學習(Network Representation Learning, NRL)的基本概念、模型和應用的全面介紹。本書首先介紹網絡嵌入的背景和興起,為讀者提供一般概述。接著,通過介紹幾種在一般圖形上的代表性方法以及基於矩陣分解的統一NE框架,介紹NE技術的發展。之後,介紹了帶有附加信息的NE變體:針對具有節點屬性/內容/標籤的圖形的NE;以及具有不同特徵的變體:針對社群結構/大規模/異質圖形的NE。此外,本書介紹了NE的不同應用,如推薦系統和信息擴散預測。最後,本書總結了方法和應用,並展望未來的發展方向。