DISCOVERY AND FUSION OF UNCERTAIN KNOWLEDGE IN DATA
暫譯: 數據中不確定知識的發現與融合
Kun Yue, Weiyi Liu, Hao Wu, Dapeng Tao, Ming Gao
- 出版商: World Scientific Pub
- 出版日期: 2017-11-16
- 售價: $3,640
- 貴賓價: 9.5 折 $3,458
- 語言: 英文
- 頁數: 224
- 裝訂: Hardcover
- ISBN: 9813227125
- ISBN-13: 9789813227125
海外代購書籍(需單獨結帳)
相關主題
商品描述
Data analysis is of upmost importance in the mining of big data, where knowledge discovery and inference are the basis for intelligent systems to support the real world applications. However, the process involves knowledge acquisition, representation, inference and data, Bayesian network (BN) is the key technology plays a key role in knowledge representation, in order to pave way to cope with incomplete, fuzzy data to solve the real-life problems.
This book presents Bayesian network as a technology to support data-intensive and incremental learning in knowledge discovery, inference and data fusion in uncertain environment.
Readership: Graduate students, researchers and professionals in the field of artificial intelligence/machine learning and information sciences, especially in databases.
商品描述(中文翻譯)
數據分析在大數據挖掘中至關重要,知識發現和推理是支持現實世界應用的智能系統的基礎。然而,這一過程涉及知識獲取、表示、推理和數據,貝葉斯網絡(Bayesian network, BN)是關鍵技術,在知識表示中扮演重要角色,以應對不完整和模糊數據,解決現實生活中的問題。
本書介紹貝葉斯網絡作為一種技術,以支持在不確定環境中進行知識發現、推理和數據融合的數據密集型和增量學習。
讀者對象:研究生、研究人員以及人工智慧/機器學習和資訊科學領域的專業人士,特別是在資料庫方面。