Artificial Intelligent Approaches in Petroleum Geosciences
暫譯: 石油地球科學中的人工智慧方法

  • 出版商: Springer
  • 出版日期: 2015-05-04
  • 售價: $4,180
  • 貴賓價: 9.5$3,971
  • 語言: 英文
  • 頁數: 290
  • 裝訂: Hardcover
  • ISBN: 3319165305
  • ISBN-13: 9783319165301
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book presents several intelligent approaches for tackling and solving challenging practical problems facing those in the petroleum geosciences and petroleum industry. Written by experienced academics, this book offers state-of-the-art working examples and provides the reader with exposure to the latest developments in the field of intelligent methods applied to oil and gas research, exploration and production. It also analyzes the strengths and weaknesses of each method presented using benchmarking, whilst also emphasizing essential parameters such as robustness, accuracy, speed of convergence, computer time, overlearning and the role of normalization. The intelligent approaches presented include artificial neural networks, fuzzy logic, active learning method, genetic algorithms and support vector machines, amongst others.

Integration, handling data of immense size and uncertainty, and dealing with risk management are among crucial issues in petroleum geosciences. The problems we have to solve in this domain are becoming too complex to rely on a single discipline for effective solutions and the costs associated with poor predictions (e.g. dry holes) increase. Therefore, there is a need to establish a new approach aimed at proper integration of disciplines (such as petroleum engineering, geology, geophysics and geochemistry), data fusion, risk reduction and uncertainty management. These intelligent techniques can be used for uncertainty analysis, risk assessment, data fusion and mining, data analysis and interpretation, and knowledge discovery, from diverse data such as 3-D seismic, geological data, well logging, and production data. This book is intended for petroleum scientists, data miners, data scientists and professionals and post-graduate students involved in petroleum industry.

商品描述(中文翻譯)

這本書提出了幾種智能方法,以應對和解決石油地球科學和石油產業面臨的挑戰性實際問題。由經驗豐富的學者撰寫,本書提供了最先進的實作範例,並讓讀者接觸到應用於石油和天然氣研究、勘探及生產的最新智能方法發展。它還通過基準測試分析了每種方法的優缺點,同時強調了穩健性、準確性、收斂速度、計算時間、過度學習和正規化的角色等重要參數。所介紹的智能方法包括人工神經網絡、模糊邏輯、主動學習方法、遺傳算法和支持向量機等。

整合、處理龐大且不確定的數據,以及風險管理是石油地球科學中的關鍵問題。我們在這一領域需要解決的問題變得過於複雜,無法僅依賴單一學科來有效解決,且與不良預測(例如乾井)相關的成本不斷增加。因此,有必要建立一種新的方法,旨在適當整合各學科(如石油工程、地質學、地球物理學和地球化學)、數據融合、風險降低和不確定性管理。這些智能技術可用於不確定性分析、風險評估、數據融合和挖掘、數據分析和解釋,以及知識發現,涵蓋來自3D地震、地質數據、井下測量和生產數據等多樣化數據。本書旨在為石油科學家、數據挖掘專家、數據科學家以及參與石油產業的專業人士和研究生提供參考。