Advances in Big Data Analytics: Theory, Algorithms and Practices

Yong Shi

相關主題

商品描述

Today, big data affects countless aspects of our daily lives. This book provides a comprehensive and cutting-edge study on big data analytics, based on the research findings and applications developed by the author and his colleagues in related areas. It addresses the concepts of big data analytics and/or data science, multi-criteria optimization for learning, expert and rule-based data analysis, support vector machines for classification, feature selection, data stream analysis, learning analysis, sentiment analysis, link analysis, and evaluation analysis. The book also explores lessons learned in applying big data to business, engineering and healthcare. Lastly, it addresses the advanced topic of intelligence-quotient (IQ) tests for artificial intelligence.

作者簡介

Yong Shi is the Director of the Research Center on Fictitious Economy and Data Science, and Director of the Key Lab of Big Data Mining and Knowledge Management, Chinese Academy of Sciences. He has been an Isaacson Professor, Union Pacific Chair, and Charles W. and Margre H. Durham Distinguished Professor of Information Technology at the College of Information Science and Technology, University of Nebraska at Omaha, USA. He has served on the State Council of the PRC (2016), as an elected member of the International Eurasian Academy of Science (2017), and as an elected fellow of the World Academy of Sciences for the Advancement of Science in Developing Countries (2015). His research interests include big data analysis, data science, business intelligence, data mining and multiple-criteria decision making. He has published more than 20 books, over 500 papers in various journals, and numerous conferences/proceedings papers. He is the Editor-in-Chief of both the International Journal of Information Technology and Decision Making (SCI) and of Annals of Data Science (Springer), and serves on the Editorial Boards of numerous academic journals.