Cluster Analysis: A Primer Using R
暫譯: 叢集分析:使用 R 的入門指南
Rokach, Lior
- 出版商: World Scientific Pub
- 出版日期: 2024-10-28
- 售價: $4,390
- 貴賓價: 9.5 折 $4,171
- 語言: 英文
- 頁數: 304
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 9811297479
- ISBN-13: 9789811297472
海外代購書籍(需單獨結帳)
相關主題
商品描述
Cluster analysis is a fundamental data analysis task that aims to group similar data points together, revealing the inherent structure and patterns within complex datasets. This book serves as a comprehensive and accessible guide, taking readers on a captivating journey through the foundational principles of cluster analysis.
At its core, the book delves deeply into various clustering algorithms, covering partitioning methods, hierarchical methods, and advanced techniques such as mixture density-based clustering, graph clustering, and grid-based clustering. Each method is presented with clear, concise explanations, supported by illustrative examples and hands-on implementations in the R programming language - a popular and powerful tool for data analysis and visualization.
Recognizing the importance of cluster validation and evaluation, the book devotes a dedicated chapter to exploring a wide range of internal and external quality criteria, equipping readers with the necessary tools to assess the performance of clustering algorithms. For those eager to stay at the forefront of the field, the book also presents deep learning-based clustering methods, showcasing the remarkable capabilities of neural networks in uncovering hidden structures within complex, high-dimensional data.
Whether you are a student seeking to expand your knowledge, a data analyst looking to enhance your toolbox, or a researcher exploring the frontiers of data analysis, this book will provide you with a solid foundation in cluster analysis and empower you to tackle a wide range of data-driven problems.
商品描述(中文翻譯)
叢集分析是一項基本的數據分析任務,旨在將相似的數據點分組,揭示複雜數據集中的內在結構和模式。本書作為一本全面且易於理解的指南,帶領讀者深入叢集分析的基本原則,展開一段引人入勝的旅程。
本書的核心深入探討各種叢集演算法,涵蓋分區方法、層次方法以及混合密度基礎叢集、圖形叢集和網格基礎叢集等先進技術。每種方法都以清晰、簡潔的解釋呈現,並輔以插圖示例和在 R 程式語言中的實作,R 是一個流行且強大的數據分析和視覺化工具。
本書認識到叢集驗證和評估的重要性,專門 dedicates 一章探討各種內部和外部質量標準,為讀者提供必要的工具來評估叢集演算法的性能。對於那些渴望在該領域保持前沿的讀者,本書還介紹了基於深度學習的叢集方法,展示神經網絡在揭示複雜高維數據中隱藏結構的卓越能力。
無論您是希望擴展知識的學生、尋求增強工具箱的數據分析師,還是探索數據分析前沿的研究人員,本書將為您提供堅實的叢集分析基礎,並使您能夠應對各種數據驅動的問題。