Representations of Lie Algebras and Partial Differential Equations
暫譯: 李代數的表示法與偏微分方程

Xiaoping Xu

  • 出版商: Springer
  • 出版日期: 2017-10-24
  • 售價: $5,860
  • 貴賓價: 9.5$5,567
  • 語言: 英文
  • 頁數: 620
  • 裝訂: Hardcover
  • ISBN: 9811063907
  • ISBN-13: 9789811063909
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book provides explicit representations of finite-dimensional simple Lie algebras, related partial differential equations, linear orthogonal algebraic codes, combinatorics and algebraic varieties, summarizing the author’s works and his joint works with his former students.  Further, it presents various oscillator generalizations of the classical representation theorem on harmonic polynomials, and highlights new functors from the representation category of a simple Lie algebra to that of another simple Lie algebra.

Partial differential equations play a key role in solving certain representation problems. The weight matrices of the minimal and adjoint representations over the simple Lie algebras of types E and F are proved to generate ternary orthogonal linear codes with large minimal distances. New multi-variable hypergeometric functions related to the root systems of simple Lie algebras are introduced in connection with quantum many-body systems in one dimension. In addition, the book identifies certain equivalent combinatorial properties on representation formulas, and the irreducibility of representations is proved directly related to algebraic varieties. The book offers a valuable reference guide for mathematicians and scientists alike. As it is largely self-contained – readers need only a minimal background in calculus and linear algebra – it can also be used as a textbook.

商品描述(中文翻譯)

這本書提供了有限維簡單李代數的明確表示、相關的偏微分方程、線性正交代數碼、組合學和代數簇,總結了作者的研究成果以及他與前學生的共同研究。此外,它展示了古典表示定理在調和多項式上的各種振盪器推廣,並強調了從簡單李代數的表示範疇到另一個簡單李代數的表示範疇的新函子。

偏微分方程在解決某些表示問題中扮演了關鍵角色。對於簡單李代數類型 E 和 F 的最小表示和伴隨表示的權重矩陣被證明能生成具有大最小距離的三元正交線性碼。與簡單李代數的根系相關的新多變量超幾何函數在一維量子多體系統中被引入。此外,本書確定了表示公式上的某些等價組合性質,並直接證明了表示的不可約性與代數簇之間的關係。本書為數學家和科學家提供了一個有價值的參考指南。由於其內容大部分是自足的——讀者只需具備基本的微積分和線性代數背景——因此也可以用作教科書。