Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications
暫譯: 理解與應用粗集基礎特徵選擇:概念、技術與應用
Muhammad Summair Raza, Usman Qamar
- 出版商: Springer
- 出版日期: 2017-07-25
- 售價: $5,230
- 貴賓價: 9.5 折 $4,969
- 語言: 英文
- 頁數: 194
- 裝訂: Hardcover
- ISBN: 9811049645
- ISBN-13: 9789811049644
海外代購書籍(需單獨結帳)
相關主題
商品描述
The book will provide:
1) In depth explanation of rough set theory along with examples of the concepts.
2) Detailed discussion on idea of feature selection.
3) Details of various representative and state of the art feature selection techniques along with algorithmic explanations.4) Critical review of state of the art rough set based feature selection methods covering strength and weaknesses of each.
5) In depth investigation of various application areas using rough set based feature selection.
6) Complete Library of Rough Set APIs along with complexity analysis and detailed manual of using APIs
7) Program files of various representative Feature Selection algorithms along with explanation of each.
The book will be a complete and self-sufficient source both for primary and secondary audience. Starting from basic concepts to state-of-the art implementation, it will be a constant source of help both for practitioners and researchers.Book will provide in-depth explanation of concepts supplemented with working examples to help in practical implementation. As far as practical implementation is concerned, the researcher/practitioner can fully concentrate on his/her own work without any concern towards implementation of basic RST functionality.
Providing complexity analysis along with full working programs will further simplify analysis and comparison of algorithms.
商品描述(中文翻譯)
本書將提供:
1) 對粗集理論的深入解釋,並附有概念的範例。
2) 對特徵選擇概念的詳細討論。
3) 各種代表性及最先進的特徵選擇技術的詳細說明,並附有演算法解釋。
4) 對最先進的基於粗集的特徵選擇方法的批判性評估,涵蓋每種方法的優缺點。
5) 對使用基於粗集的特徵選擇的各種應用領域的深入調查。
6) 完整的粗集 API 庫,並附有複雜度分析及詳細的 API 使用手冊。
7) 各種代表性特徵選擇演算法的程式檔案,並附有每個演算法的解釋。
本書將成為初級和次級讀者的完整且自足的資源。從基本概念到最先進的實作,它將持續為實務工作者和研究人員提供幫助。
本書將提供深入的概念解釋,並輔以實作範例,以協助實際應用。就實際實作而言,研究者/實務工作者可以完全專注於自己的工作,而無需擔心基本 RST 功能的實作。
提供複雜度分析及完整的工作程式將進一步簡化演算法的分析和比較。