Rough Fuzzy Image Analysis: Foundations and Methodologies (Chapman & Hall/CRC Mathematical and Computational Imaging Sciences Series)
暫譯: 粗糙模糊影像分析:基礎與方法論(Chapman & Hall/CRC 數學與計算影像科學系列)
- 出版商: CRC
- 出版日期: 2017-10-06
- 售價: $3,500
- 貴賓價: 9.5 折 $3,325
- 語言: 英文
- 頁數: 266
- 裝訂: Paperback
- ISBN: 1138116238
- ISBN-13: 9781138116238
海外代購書籍(需單獨結帳)
相關主題
商品描述
Fuzzy sets, near sets, and rough sets are useful and important stepping stones in a variety of approaches to image analysis. These three types of sets and their various hybridizations provide powerful frameworks for image analysis. Emphasizing the utility of fuzzy, near, and rough sets in image analysis, Rough Fuzzy Image Analysis: Foundations and Methodologies introduces the fundamentals and applications in the state of the art of rough fuzzy image analysis.
In the first chapter, the distinguished editors explain how fuzzy, near, and rough sets provide the basis for the stages of pictorial pattern recognition: image transformation, feature extraction, and classification. The text then discusses hybrid approaches that combine fuzzy sets and rough sets in image analysis, illustrates how to perform image analysis using only rough sets, and describes tolerance spaces and a perceptual systems approach to image analysis. It also presents a free, downloadable implementation of near sets using the Near Set Evaluation and Recognition (NEAR) system, which visualizes concepts from near set theory. In addition, the book covers an array of applications, particularly in medical imaging involving breast cancer diagnosis, laryngeal pathology diagnosis, and brain MR segmentation.
Edited by two leading researchers and with contributions from some of the best in the field, this volume fully reflects the diversity and richness of rough fuzzy image analysis. It deftly examines the underlying set theories as well as the diverse methods and applications.
商品描述(中文翻譯)
模糊集合、近集合和粗集合是影像分析中各種方法的重要基石。這三種類型的集合及其各種混合形式為影像分析提供了強大的框架。本書《粗模糊影像分析:基礎與方法論》強調了模糊集合、近集合和粗集合在影像分析中的實用性,介紹了粗模糊影像分析的基本原理和應用。
在第一章中,兩位傑出的編輯解釋了模糊集合、近集合和粗集合如何為圖像模式識別的各個階段提供基礎:圖像轉換、特徵提取和分類。接著,文本討論了結合模糊集合和粗集合的混合方法在影像分析中的應用,說明了如何僅使用粗集合進行影像分析,並描述了容忍空間和感知系統在影像分析中的應用。此外,本書還提供了一個免費可下載的近集合實現,使用近集合評估與識別(NEAR)系統,該系統可視化近集合理論中的概念。此外,本書涵蓋了一系列應用,特別是在醫學影像中,包括乳腺癌診斷、喉部病理診斷和腦部磁共振分割。
本書由兩位領先的研究者編輯,並有該領域一些頂尖專家的貢獻,充分反映了粗模糊影像分析的多樣性和豐富性。它巧妙地檢視了基礎集合理論以及多樣的方法和應用。