Computerized Analysis of Mammographic Images for Detection and Characterization of Breast Cancer (Synthesis Lectures on Biomedical Engineering)
暫譯: 乳腺癌檢測與特徵化的數位化乳房攝影影像分析(生醫工程綜合講座)
Rangaraj M. Rangayyan
- 出版商: Morgan & Claypool
- 出版日期: 2017-07-06
- 售價: $2,250
- 貴賓價: 9.5 折 $2,138
- 語言: 英文
- 頁數: 188
- 裝訂: Paperback
- ISBN: 1681731568
- ISBN-13: 9781681731568
海外代購書籍(需單獨結帳)
相關主題
商品描述
The identification and interpretation of the signs of breast cancer in mammographic images from screening programs can be very difficult due to the subtle and diversified appearance of breast disease. This book presents new image processing and pattern recognition techniques for computer-aided detection and diagnosis of breast cancer in its various forms. The main goals are: (1) the identification of bilateral asymmetry as an early sign of breast disease which is not detectable by other existing approaches; and (2) the detection and classification of masses and regions of architectural distortion, as benign lesions or malignant tumors, in a unified framework that does not require accurate extraction of the contours of the lesions. The innovative aspects of the work include the design and validation of landmarking algorithms, automatic Tabár masking procedures, and various feature descriptors for quantification of similarity and for contour independent classification of mammographic lesions. Characterization of breast tissue patterns is achieved by means of multidirectional Gabor filters. For the classification tasks, pattern recognition strategies, including Fisher linear discriminant analysis, Bayesian classifiers, support vector machines, and neural networks are applied using automatic selection of features and cross-validation techniques. Computer-aided detection of bilateral asymmetry resulted in accuracy up to 0.94, with sensitivity and specificity of 1 and 0.88, respectively. Computer-aided diagnosis of automatically detected lesions provided sensitivity of detection of malignant tumors in the range of [0.70, 0.81] at a range of falsely detected tumors of [0.82, 3.47] per image. The techniques presented in this work are effective in detecting and characterizing various mammographic signs of breast disease.
商品描述(中文翻譯)
在篩檢計畫中,從乳房攝影影像中識別和解釋乳癌的徵兆可能非常困難,因為乳房疾病的外觀微妙且多樣化。本書介紹了用於乳癌各種形式的電腦輔助檢測和診斷的新影像處理和模式識別技術。主要目標為:(1) 識別雙側不對稱作為乳房疾病的早期徵兆,這是其他現有方法無法檢測到的;(2) 在一個統一的框架中檢測和分類腫塊及結構扭曲區域,將其歸類為良性病變或惡性腫瘤,而不需要準確提取病變的輪廓。這項工作的創新之處包括地標算法的設計和驗證、自動Tabár遮罩程序,以及用於相似性量化和輪廓獨立分類乳房攝影病變的各種特徵描述符。乳腺組織模式的特徵化是通過多方向Gabor濾波器實現的。對於分類任務,應用了模式識別策略,包括Fisher線性判別分析、貝葉斯分類器、支持向量機和神經網絡,並使用自動特徵選擇和交叉驗證技術。電腦輔助檢測雙側不對稱的準確率高達0.94,敏感性和特異性分別為1和0.88。自動檢測病變的電腦輔助診斷提供了惡性腫瘤檢測的敏感性範圍為[0.70, 0.81],每幅影像的假陽性腫瘤範圍為[0.82, 3.47]。本工作中提出的技術在檢測和特徵化各種乳房疾病的乳房攝影徵兆方面是有效的。