Nonlinear Principal Component Analysis and Its Applications (SpringerBriefs in Statistics)
暫譯: 非線性主成分分析及其應用(SpringerBriefs in Statistics)

Yuichi Mori

  • 出版商: Springer
  • 出版日期: 2016-12-16
  • 售價: $2,800
  • 貴賓價: 9.5$2,660
  • 語言: 英文
  • 頁數: 88
  • 裝訂: Paperback
  • ISBN: 981100157X
  • ISBN-13: 9789811001574
  • 相關分類: 機率統計學 Probability-and-statistics
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

商品描述

This book expounds the principle and related applications of nonlinear principal component analysis (PCA), which is useful method to analyze mixed measurement levels data. 
In the part dealing with the principle, after a brief introduction of ordinary PCA, a PCA for categorical data (nominal and ordinal) is introduced as nonlinear PCA, in which an optimal scaling technique is used to quantify the categorical variables. The alternating least squares (ALS) is the main algorithm in the method. Multiple correspondence analysis (MCA), a special case of nonlinear PCA, is also introduced. All formulations in these methods are integrated in the same manner as matrix operations. Because any measurement levels data can be treated consistently as numerical data and ALS is a very powerful tool for estimations, the methods can be utilized in a variety of fields such as biometrics, econometrics, psychometrics, and sociology. 
In the applications part of the book, four applications are introduced: variable selection for mixed measurement levels data, sparse MCA, joint dimension reduction and clustering methods for categorical data, and acceleration of ALS computation. The variable selection methods in PCA that originally were developed for numerical data can be applied to any types of measurement levels by using nonlinear PCA. Sparseness and joint dimension reduction and clustering for nonlinear data, the results of recent studies, are extensions obtained by the same matrix operations in nonlinear PCA. Finally, an acceleration algorithm is proposed to reduce the problem of computational cost in the ALS iteration in nonlinear multivariate methods. 
This book thus presents the usefulness of nonlinear PCA which can be applied to different measurement levels data in diverse fields. As well, it covers the latest topics including the extension of the traditional statistical method, newly proposed nonlinear methods, and computational efficiency in the methods.

商品描述(中文翻譯)

這本書闡述了非線性主成分分析(PCA)的原理及相關應用,這是一種分析混合測量水平數據的有用方法。

在原理部分,書中首先簡要介紹了普通的PCA,接著介紹了用於類別數據(名義和序數)的PCA,這被稱為非線性PCA,其中使用最佳縮放技術來量化類別變數。交替最小二乘法(ALS)是該方法中的主要算法。多重對應分析(MCA),作為非線性PCA的一個特例,也被介紹。這些方法中的所有公式都以矩陣運算的方式整合。由於任何測量水平的數據都可以一致地視為數值數據,而ALS是一個非常強大的估計工具,因此這些方法可以應用於生物識別學、計量經濟學、心理測量學和社會學等多個領域。

在書籍的應用部分,介紹了四個應用:混合測量水平數據的變數選擇、稀疏MCA、類別數據的聯合降維和聚類方法,以及ALS計算的加速。最初為數值數據開發的PCA變數選擇方法可以通過使用非線性PCA應用於任何類型的測量水平。針對非線性數據的稀疏性和聯合降維及聚類,最近研究的結果是通過非線性PCA中的相同矩陣運算獲得的擴展。最後,提出了一種加速算法,以減少非線性多變量方法中ALS迭代的計算成本問題。

因此,這本書展示了非線性PCA的實用性,該方法可以應用於不同測量水平的數據,並涵蓋了最新的主題,包括傳統統計方法的擴展、新提出的非線性方法以及方法中的計算效率。