Nonlinear Principal Component Analysis and Its Applications (SpringerBriefs in Statistics) (非線性主成分分析及其應用 (斯普林格統計簡報))
Yuichi Mori
- 出版商: Springer
- 出版日期: 2016-12-16
- 售價: $2,750
- 貴賓價: 9.5 折 $2,613
- 語言: 英文
- 頁數: 88
- 裝訂: Paperback
- ISBN: 981100157X
- ISBN-13: 9789811001574
-
相關分類:
機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$2,180$2,071 -
$1,430$1,359 -
$1,970$1,872 -
$480$374 -
$450$356 -
$1,890$1,796 -
$1,250$1,188 -
$420$332 -
$720$706 -
$6,660$6,327 -
$390$332 -
$560$476 -
$650$553 -
$2,470$2,340 -
$520$411 -
$650$553 -
$620$490 -
$2,100$1,995 -
$580$458 -
$1,750$1,663 -
$550$495 -
$480$480 -
$607Go 語言高級開發與實戰
-
$352Rust 編程從入門到實戰
-
$520$410
相關主題
商品描述
This book expounds the principle and related applications of nonlinear principal component analysis (PCA), which is useful method to analyze mixed measurement levels data.
In the part dealing with the principle, after a brief introduction of ordinary PCA, a PCA for categorical data (nominal and ordinal) is introduced as nonlinear PCA, in which an optimal scaling technique is used to quantify the categorical variables. The alternating least squares (ALS) is the main algorithm in the method. Multiple correspondence analysis (MCA), a special case of nonlinear PCA, is also introduced. All formulations in these methods are integrated in the same manner as matrix operations. Because any measurement levels data can be treated consistently as numerical data and ALS is a very powerful tool for estimations, the methods can be utilized in a variety of fields such as biometrics, econometrics, psychometrics, and sociology.
In the applications part of the book, four applications are introduced: variable selection for mixed measurement levels data, sparse MCA, joint dimension reduction and clustering methods for categorical data, and acceleration of ALS computation. The variable selection methods in PCA that originally were developed for numerical data can be applied to any types of measurement levels by using nonlinear PCA. Sparseness and joint dimension reduction and clustering for nonlinear data, the results of recent studies, are extensions obtained by the same matrix operations in nonlinear PCA. Finally, an acceleration algorithm is proposed to reduce the problem of computational cost in the ALS iteration in nonlinear multivariate methods.
This book thus presents the usefulness of nonlinear PCA which can be applied to different measurement levels data in diverse fields. As well, it covers the latest topics including the extension of the traditional statistical method, newly proposed nonlinear methods, and computational efficiency in the methods.
商品描述(中文翻譯)
本書闡述了非線性主成分分析(PCA)的原理及相關應用,這是一種用於分析混合測量層次數據的有用方法。
在講解原理的部分,簡要介紹了普通PCA後,引入了一種用於分類數據(名義和順序)的非線性PCA,其中使用最佳縮放技術來量化分類變量。交替最小二乘法(ALS)是該方法的主要算法。還介紹了多重對應分析(MCA),這是非線性PCA的一個特殊情況。這些方法中的所有公式都以與矩陣運算相同的方式集成。由於任何測量層次數據都可以一致地被視為數值數據,且ALS是一種非常強大的估計工具,因此這些方法可以應用於生物測量學、計量經濟學、心理測量學和社會學等各個領域。
在本書的應用部分,介紹了四個應用:混合測量層次數據的變量選擇、稀疏MCA、分類數據的聯合降維和聚類方法,以及非線性多變量方法中ALS計算的加速。PCA中最初為數值數據開發的變量選擇方法可以通過使用非線性PCA應用於任何類型的測量層次。稀疏性和非線性數據的聯合降維和聚類是最近研究的結果,是通過非線性PCA中的相同矩陣運算得到的擴展。最後,提出了一種加速算法,以減少非線性多變量方法中ALS迭代的計算成本問題。
因此,本書介紹了非線性PCA的實用性,可以應用於不同測量層次的數據和各個領域。同時,它還涵蓋了包括傳統統計方法擴展、新提出的非線性方法以及方法中的計算效率等最新話題。