Exploratory Multivariate Analysis by Example Using R
暫譯: 使用 R 的範例進行探索性多變量分析
Husson, Francois, Le, Sebastien, Pagès, Jérôme
- 出版商: CRC
- 出版日期: 2020-09-30
- 售價: $2,480
- 貴賓價: 9.5 折 $2,356
- 語言: 英文
- 頁數: 248
- 裝訂: Quality Paper - also called trade paper
- ISBN: 036765802X
- ISBN-13: 9780367658021
海外代購書籍(需單獨結帳)
商品描述
Full of real-world case studies and practical advice, Exploratory Multivariate Analysis by Example Using R, Second Edition focuses on four fundamental methods of multivariate exploratory data analysis that are most suitable for applications. It covers principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis (MCA) when variables are categorical, and hierarchical cluster analysis.
The authors take a geometric point of view that provides a unified vision for exploring multivariate data tables. Within this framework, they present the principles, indicators, and ways of representing and visualising objects that are common to the exploratory methods. The authors show how to use categorical variables in a PCA context in which variables are quantitative, how to handle more than two categorical variables in a CA context in which there are originally two variables, and how to add quantitative variables in an MCA context in which variables are categorical. They also illustrate the methods using examples from various fields, with related R code accessible in the FactoMineR package developed by the authors.
商品描述(中文翻譯)
充滿真實案例研究和實用建議的《使用 R 進行探索性多變量分析(第二版)》專注於四種最適合應用的多變量探索性數據分析基本方法。它涵蓋了當變量為定量時的主成分分析(PCA)、當變量為類別時的對應分析(CA)和多重對應分析(MCA),以及層次聚類分析。
作者採取幾何觀點,提供了一個統一的視角來探索多變量數據表。在這個框架內,他們介紹了探索性方法中常見的原則、指標以及表示和可視化對象的方式。作者展示了如何在變量為定量的 PCA 上下文中使用類別變量,如何在原本有兩個變量的 CA 上下文中處理多於兩個的類別變量,以及如何在變量為類別的 MCA 上下文中添加定量變量。他們還使用來自各個領域的例子來說明這些方法,並提供了由作者開發的 FactoMineR 套件中可訪問的相關 R 代碼。
作者簡介
Francois Husson, Sebastien Le, Jérôme Pagès
作者簡介(中文翻譯)
Francois Husson, Sebastien Le, Jérôme Pagès