Geostatistics for Compositional Data with R
暫譯: 使用 R 進行組成數據的地質統計學

Tolosana-Delgado, Raimon, Mueller, Ute

  • 出版商: Springer
  • 出版日期: 2021-11-20
  • 售價: $4,890
  • 貴賓價: 9.5$4,646
  • 語言: 英文
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3030825671
  • ISBN-13: 9783030825676
  • 相關分類: 機率統計學 Probability-and-statistics
  • 海外代購書籍(需單獨結帳)

商品描述

This book provides a guided approach to the geostatistical modelling of compositional spatial data. These data are data in proportions, percentages or concentrations distributed in space which exhibit spatial correlation. The book can be divided into four blocks. The first block sets the framework and provides some background on compositional data analysis. Block two introduces compositional exploratory tools for both non-spatial and spatial aspects. Block three covers all necessary facets of multivariate spatial prediction for compositional data: variogram modelling, cokriging and validation. Finally, block four details strategies for simulation of compositional data, including transformations to multivariate normality, Gaussian cosimulation, multipoint simulation of compositional data, and common postprocessing techniques, valid for both Gaussian and multipoint methods.

All methods are illustrated via applications to two types of data sets: one a large-scale geochemical survey, comprised of a full suite of geochemical variables, and the other from a mining context, where only the elements of greatest importance are considered. R codes are included for all aspects of the methodology, encapsulated in the R package "gmGeostats", available in CRAN.

 

商品描述(中文翻譯)

這本書提供了一種指導性的方法來進行組成空間數據的地質統計建模。這些數據是以比例、百分比或濃度的形式分佈在空間中,並顯示出空間相關性。這本書可以分為四個部分。第一部分建立了框架,並提供了一些關於組成數據分析的背景知識。第二部分介紹了針對非空間和空間方面的組成探索工具。第三部分涵蓋了組成數據的多變量空間預測所需的所有方面:變異數模型、共克里金(cokriging)和驗證。最後,第四部分詳細說明了組成數據模擬的策略,包括轉換為多變量常態性、高斯共模擬(Gaussian cosimulation)、組成數據的多點模擬以及適用於高斯和多點方法的常見後處理技術。

所有方法都通過應用於兩種類型的數據集來進行說明:一個是大型地球化學調查,包含一整套地球化學變量,另一個來自礦業背景,僅考慮最重要的元素。所有方法論的方面都包含了 R 語言代碼,封裝在 R 套件 "gmGeostats" 中,該套件可在 CRAN 獲得。

作者簡介

Raimon Tolosana-Delgado is a senior scientist from the department of modelling and valuation at Helmholtz Institute Freiberg, Germany. He is a specialist in compositional data analysis, applied multivariate geostatistics, and applications of statistics, data analysis and machine learning in geology as well as in the mining and minerals industry. His current focus is on predictive geometallurgy.

Ute Mueller is an associate professor in mathematics at Edith Cowan University in Perth, Australia. She has been teaching geostatistics for the last twenty years and has a research background in the application of multivariate geostatistical modelling techniques in mining, fisheries and health. In the last ten years she has focussed on compositional geostatistical data in particular.

作者簡介(中文翻譯)

Raimon Tolosana-Delgado 是德國海爾姆霍茨研究所弗賴貝格(Helmholtz Institute Freiberg)建模與評估部的高級科學家。他專精於組成數據分析、應用多變量地質統計學,以及統計學、數據分析和機器學習在地質學及礦業和礦物行業中的應用。他目前的研究重點是預測性地質冶金學。

Ute Mueller 是澳大利亞珀斯的艾迪斯科文大學(Edith Cowan University)數學副教授。她在過去二十年中教授地質統計學,並在礦業、漁業和健康領域應用多變量地質統計建模技術方面擁有研究背景。在過去十年中,她特別專注於組成地質統計數據。