Data Science with Jupyter: Master Data Science skills with easy-to-follow Python examples
暫譯: 使用 Jupyter 的資料科學:透過易於跟隨的 Python 範例掌握資料科學技能
Gupta, Prateek
- 出版商: BPB Publications
- 出版日期: 2019-03-26
- 售價: $1,200
- 貴賓價: 9.5 折 $1,140
- 語言: 英文
- 頁數: 324
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9388511379
- ISBN-13: 9789388511377
-
相關分類:
Python、程式語言、Data Science
-
相關翻譯:
Jupyter 數據科學實戰 (簡中版)
立即出貨 (庫存=1)
相關主題
商品描述
Description
Modern businesses are awash with data, making data driven decision-making tasks increasingly complex. As a result, relevant technical expertise and analytical skills are required to do such tasks. This book aims to equip you with just enough knowledge of Python in conjunction with skills to use powerful tool such as Jupyter Notebook in order to succeed in the role of a data scientist.
The book starts with a brief introduction to the world of data science and the opportunities you may come across along with an overview of the key topics covered in the book. You will learn how to setup Anaconda installation which comes with Jupyter and preinstalled Python packages. Before diving in to several supervised, unsupervised and other machine learning techniques, you'll learn how to use basic data structures, functions, libraries and packages required to import, clean, visualize and process data. Several machine learning techniques such as regression, classification, clustering, time-series etc have been explained with the use of practical examples and by comparing the performance of various models.
By the end of the book, you will come across few case studies to put your knowledge to practice and solve real-life business problems such as building a movie recommendation engine, classifying spam messages, predicting the ability of a borrower to repay loan on time and time series forecasting of housing prices. Remember to practice additional examples provided in the code bundle of the book to master these techniques.
Audience
The book is intended for anyone looking for a career in data science, all aspiring data scientists who want to learn the most powerful programming language in Machine Learning or working professionals who want to switch their career in Data Science. While no prior knowledge of Data Science or related technologies is assumed, it will be helpful to have some programming experience.
Key Features
- Acquire Python skills to do independent data science projects
- Learn the basics of linear algebra and statistical science in Python way
- Understand how and when they're used in data science
- Build predictive models, tune their parameters and analyze performance in few steps
- Cluster, transform, visualize, and extract insights from unlabelled datasets
- Learn how to use matplotlib and seaborn for data visualization
- Implement and save machine learning models for real-world business scenarios
- Data Science Fundamentals
- Installing Software and Setting up
- Lists and Dictionaries
- Function and Packages
- NumPy Foundation
- Pandas and Dataframe
- Interacting with Databases
- Thinking Statistically in Data Science
- How to import data in Python?
- Cleaning of imported data
- Data Visualization
- Data Pre-processing
- Supervised Machine Learning
- Unsupervised Machine Learning
- Handling Time-Series Data
- Time-Series Methods
- Case Study - 1
- Case Study - 2
- Case Study - 3
- Case Study - 4
Prateek is a Data Enthusiast and loves the data driven technologies. Prateek has total 7 years of experience and currently he is working as a Data Scientist in an MNC. He has worked with finance and retail clients and has developed Machine Learning and Deep Learning solutions for their business. His keen area of interest is in natural language processing and in computer vision. In leisure he writes posts about Data Science with Python in his blog.
商品描述(中文翻譯)
**逐步指南:使用 Jupyter Notebook 練習資料科學技術**
**描述**
現代企業充斥著數據,使得基於數據的決策任務變得越來越複雜。因此,執行這些任務需要相關的技術專業知識和分析技能。本書旨在讓您掌握足夠的 Python 知識,並結合使用強大工具 Jupyter Notebook 的技能,以便在資料科學家的角色中取得成功。
本書首先簡要介紹資料科學的世界及您可能遇到的機會,並概述本書涵蓋的關鍵主題。您將學習如何設置 Anaconda 安裝,該安裝包含 Jupyter 和預先安裝的 Python 套件。在深入探討幾種監督式、非監督式及其他機器學習技術之前,您將學習如何使用基本數據結構、函數、庫和套件,這些都是導入、清理、可視化和處理數據所需的。幾種機器學習技術,如回歸、分類、聚類、時間序列等,將通過實際範例進行解釋,並比較各種模型的性能。
在本書結束時,您將接觸到幾個案例研究,以將您的知識付諸實踐,解決現實生活中的商業問題,例如建立電影推薦引擎、分類垃圾郵件、預測借款人按時還款的能力以及房價的時間序列預測。請記得練習書中代碼包中提供的額外範例,以掌握這些技術。
**讀者對象**
本書適合任何希望在資料科學領域發展職業的人,所有渴望成為資料科學家的讀者,想學習機器學習中最強大的程式語言,或希望轉職至資料科學的在職專業人士。雖然不假設讀者具備資料科學或相關技術的先前知識,但擁有一些程式設計經驗將會有所幫助。
**主要特點**
- 獲得 Python 技能以進行獨立的資料科學專案
- 以 Python 方式學習線性代數和統計科學的基礎
- 理解它們在資料科學中的使用方式和時機
- 在幾個步驟中建立預測模型、調整其參數並分析性能
- 對未標記數據集進行聚類、轉換、可視化和提取見解
- 學習如何使用 matplotlib 和 seaborn 進行數據可視化
- 實現並保存機器學習模型以應對現實商業場景
**目錄**
1. 資料科學基礎
2. 安裝軟體和設置
3. 列表和字典
4. 函數和套件
5. NumPy 基礎
6. Pandas 和 DataFrame
7. 與資料庫互動
8. 在資料科學中進行統計思考
9. 如何在 Python 中導入數據?
10. 導入數據的清理
11. 數據可視化
12. 數據預處理
13. 監督式機器學習
14. 非監督式機器學習
15. 處理時間序列數據
16. 時間序列方法
17. 案例研究 - 1
18. 案例研究 - 2
19. 案例研究 - 3
20. 案例研究 - 4
**關於作者**
Prateek 是一位資料愛好者,熱愛數據驅動的技術。Prateek 擁有 7 年的總經驗,目前在一家跨國公司擔任資料科學家。他曾與金融和零售客戶合作,為他們的業務開發機器學習和深度學習解決方案。他的興趣領域包括自然語言處理和計算機視覺。在閒暇時,他在自己的部落格上撰寫有關 Python 資料科學的文章。