Advanced Data Analytics Using Python: With Architectural Patterns, Text and Image Classification, and Optimization Techniques
暫譯: 使用 Python 進行進階數據分析:包含架構模式、文本與圖像分類及優化技術

Mukhopadhyay, Sayan

  • 出版商: Apress
  • 出版日期: 2022-11-26
  • 售價: $1,740
  • 貴賓價: 9.5$1,653
  • 語言: 英文
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1484280040
  • ISBN-13: 9781484280041
  • 相關分類: Python程式語言Data Science
  • 海外代購書籍(需單獨結帳)

商品描述

Understand advanced data analytics concepts such as time series and principal component analysis with ETL, supervised learning, and PySpark using Python. This book covers architectural patterns in data analytics, text and image classification, optimization techniques, natural language processing, and computer vision in the cloud environment.
Generic design patterns in Python programming is clearly explained, emphasizing architectural practices such as hot potato anti-patterns. You'll review recent advances in databases such as Neo4j, Elasticsearch, and MongoDB. You'll then study feature engineering in images and texts with implementing business logic and see how to build machine learning and deep learning models using transfer learning.

Advanced Analytics with Python, 2nd edition features a chapter on clustering with a neural network, regularization techniques, and algorithmic design patterns in data analytics with reinforcement learning. Finally, the recommender system in PySpark explains how to optimize models for a specific application.

What You'll Learn
  • Build intelligent systems for enterprise
  • Review time series analysis, classifications, regression, and clustering
  • Explore supervised learning, unsupervised learning, reinforcement learning, and transfer learning
  • Use cloud platforms like GCP and AWS in data analytics
  • Understand Covers design patterns in Python
Who This Book Is For

Data scientists and software developers interested in the field of data analytics.

商品描述(中文翻譯)

了解進階數據分析概念,例如時間序列和主成分分析,使用 Python 的 ETL、監督式學習和 PySpark。本書涵蓋數據分析中的架構模式、文本和圖像分類、優化技術、自然語言處理以及雲端環境中的計算機視覺。

Python 程式設計中的通用設計模式被清楚地解釋,強調架構實踐,例如熱土豆反模式。您將回顧最近在數據庫方面的進展,例如 Neo4j、Elasticsearch 和 MongoDB。接著,您將學習圖像和文本中的特徵工程,實現商業邏輯,並了解如何使用轉移學習構建機器學習和深度學習模型。

《Advanced Analytics with Python, 2nd edition》包含一章關於使用神經網絡的聚類、正則化技術以及強化學習中的數據分析算法設計模式。最後,PySpark 中的推薦系統解釋了如何為特定應用優化模型。

您將學到的內容:
- 為企業構建智能系統
- 回顧時間序列分析、分類、回歸和聚類
- 探索監督式學習、非監督式學習、強化學習和轉移學習
- 在數據分析中使用 GCP 和 AWS 等雲端平台
- 理解 Python 中的設計模式

本書適合對數據分析領域感興趣的數據科學家和軟體開發人員。

作者簡介

In his 13+ years industry experience, Sayan Mukhopadhyay has been associated with companies such as Credit-Suisse, PayPal, CA Technology, CSC, and Mphasis. He has a deep understanding of data analysis applications in domains such as investment banking, online payments, online advertising, IT infrastructure, and retail. His area of expertise is applied high-performance computing in distributed and data-driven environments such as real-time analysis and high-frequency trading.

作者簡介(中文翻譯)

在他超過13年的行業經驗中,Sayan Mukhopadhyay 曾與多家企業合作,包括 Credit-Suisse、PayPal、CA Technology、CSC 和 Mphasis。他對於數據分析在投資銀行、線上支付、線上廣告、IT 基礎設施和零售等領域的應用有深入的理解。他的專業領域是應用於分散式和數據驅動環境中的高效能計算,例如即時分析和高頻交易。